

NAVAL

POSTGRADUATE

MONTEREY, CALIFORNIA

THESIS

Approved for public released; distribution is unlimited

SCHOOL

OBJECT TRACKING USING WIRELESS SENSOR
NETWORKS

by

Vlasios Salatas

September 2005

 Thesis Advisor: Gurminder Singh
 Thesis Advisor: Arijit Das

THIS PAGE INTENTIONALLY LEFT BLANK

 i

 REPORT DOCUMENTATION PAGE Form Approved OMB No. 0704-0188
Public reporting burden for this collection of information is estimated to average 1 hour per response, including
the time for reviewing instruction, searching existing data sources, gathering and maintaining the data needed, and
completing and reviewing the collection of information. Send comments regarding this burden estimate or any
other aspect of this collection of information, including suggestions for reducing this burden, to Washington
headquarters Services, Directorate for Information Operations and Reports, 1215 Jefferson Davis Highway, Suite
1204, Arlington, VA 22202-4302, and to the Office of Management and Budget, Paperwork Reduction Project
(0704-0188) Washington DC 20503.
1. AGENCY USE ONLY (Leave blank)

2. REPORT DATE
September 2005

3. REPORT TYPE AND DATES COVERED
Master’s Thesis

4. TITLE AND SUBTITLE: Object Tracking Using Wireless Sensor Networks
6. AUTHOR(S) Vlasios Salatas

5. FUNDING NUMBERS

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES)
Naval Postgraduate School
Monterey, CA 93943-5000

8. PERFORMING
ORGANIZATION REPORT
NUMBER

9. SPONSORING /MONITORING AGENCY NAME(S) AND ADDRESS(ES)
N/A

10. SPONSORING/MONITORING
 AGENCY REPORT NUMBER

11. SUPPLEMENTARY NOTES The views expressed in this thesis are those of the author and do not reflect the official
policy or position of the Department of Defense or the U.S. Government.
12a. DISTRIBUTION / AVAILABILITY STATEMENT
Approved for public released; distribution is unlimited

12b. DISTRIBUTION CODE

13. ABSTRACT (maximum 200 words)
Wireless sensor network (WSN) is a promising new technology. It could be a way to achieve ubiquitous

computing and embedded Internet. WSNs are an efficient solution for applications that involve deep monitoring of
a deployment environment. The objective of this thesis is to explore the use of WSNs for object tracking and
motion estimation. It introduces the WSN technology, their theoretical characteristics, system constraints, WSN
architectures, deployment topologies and standards. The object-tracking system that this thesis introduces,
demonstrates a real-world application that uses a WSN to track objects and communicate their information. It is an
event-driven application implemented in Java, built on top of the Crossbow MSP 410 wireless sensor system. The
algorithm process the data returned from the WSN detection signals and tracks the object’s motion. Deployment
scenarios are proposed that demonstrate suitable node topologies for the system. The evaluation of the object–
tracking system is performed by conducting a number of indoor and outdoor experiments..

15. NUMBER OF
PAGES

297

14. SUBJECT TERMS
Wireless Sensor Network, Motion Detection, Object’s Tracking, Node, Mote, Crossbow,
MSP 410, Network Architecture, Nodes Topology, Active Message,

16. PRICE CODE

17. SECURITY
CLASSIFICATION OF
REPORT

Unclassified

18. SECURITY
CLASSIFICATION OF THIS
PAGE

Unclassified

19. SECURITY
CLASSIFICATION OF
ABSTRACT

Unclassified

20. LIMITATION
OF ABSTRACT

UL

NSN 7540-01-280-5500 Standard Form 298 (Rev. 2-89)
 Prescribed by ANSI Std. 239-18

 ii

THIS PAGE INTENTIONALLY LEFT BLANK

 iii

Approved for public released; distribution is unlimited

OBJECT TRACKING USING WIRELESS SENSOR NETWORKS

Vlasios Salatas
Lieutenant, Hellenic Navy

B.S., Hellenic Naval Academy, 1996

Submitted in partial fulfillment of the
requirements for the degree of

MASTER OF SCIENCE IN COMPUTER SCIENCE

from the

NAVAL POSTGRADUATE SCHOOL
September 2005

Author: Vlasios Salatas

Approved by: Gurminder Singh

Thesis Advisor

Arijit Das
Thesis Co-Advisor

Peter J. Denning
Chairman, Department of Computer Science

 iv

THIS PAGE INTENTIONALLY LEFT BLANK

 v

ABSTRACT

Wireless sensor network (WSN) is a promising new technology. It could be a way

to achieve ubiquitous computing and embedded Internet. WSNs are an efficient solution

for applications that involve deep monitoring of a deployment environment. The

objective of this thesis is to explore the use of WSNs for object tracking and motion

estimation. It introduces the WSN technology, their theoretical characteristics, system

constraints, WSN architectures, deployment topologies and standards. The object-

tracking system that this thesis introduces, demonstrates a real-world application that uses

a WSN to track objects and communicate their information. It is an event-driven

application implemented in Java, built on top of the Crossbow MSP 410 wireless sensor

system. The algorithm process the data returned from the WSN detection signals and

tracks the object’s motion. Deployment scenarios are proposed that demonstrate suitable

node topologies for the system. The evaluation of the object–tracking system is

performed by conducting a number of indoor and outdoor experiments.

 vi

THIS PAGE INTENTIONALLY LEFT BLANK

 vii

TABLE OF CONTENTS

I. INTRODUCTION..1
A. BACKGROUND ..1
B. OBJECTIVES ..1
C. RESEARCH QUESTIONS...2
D. SCOPE ..3
E. METHODOLOGY ..3
F. THESIS ORGANIZATION..4

II. WIRELESS SENSOR NETWORKS ...5
A. INTRODUCTION TO WIRELESS SENSOR NETWORKS5

1. Development of Wireless Networks..5
2. Ad-Hoc Networks: Introduction...6
3. Wireless Ad-Hoc Mesh Networks: Characteristics8
4. Wireless Sensor Networks: Overview ..9
5. Wireless Sensor Network: Constraints and Challenges11

B. WIRELESS SENSOR NETWORKS: APPLICATIONS AND
MOTIVATION ..11
1. Industrial Control and Monitoring ..12
2. Home Applications...12
3. Environmental and Agricultural Monitoring13
4. Military and Security Applications ..13
5. Asset Tracking..13
6. Heath Monitoring...14
7. Application Categories ..14

C. POWER MANAGEMENT ...15
1. Node’s Power Management ..15
2. System’s Power Management ...16

D. TOPOLOGY ARCHITECTURE AND NETWORKING-ROUTING
ISSUES..17
1. Design Objectives ...17

a. Sensor Devices...17
b. Scalability, flexibility, and QoS ..18
c. Application-Specific and Resource-Efficient Design18
d. Self-Configuration and Adaptability18
e. Locality of Information...18
f. Attribute-Based Naming and Data Centric Routing18
g. Cross-Layer Design...19

2. Topology and System’s Architecture ...19
a. Flat Network Architecture ..20
b. Hierarchical and Cluster-Based Network Architecture21

3. Deployment Strategies ...23

 viii

a. Predetermined ...24
b. Self-Regulated ...24
c. Randomly Undetermined ..24
d. Biased Distribution ...24

E. SECURITY AND PRIVACY CONCERNS ..24
1. Key Establishment and Trust Setup ..25
2. Secrecy and Authentication ..26
3. Privacy ..26
4. Communication Robustness..26

F. PROTOCOLS AND INDUSTRY’S STANDARDS FOR WIRELESS
SENSOR NETWORKS...26
1. 802.15.4..27

a. Physical Layer ...29
b. MAC Layer ..30

2. ZigBee..36
G. TINYOS ..41

III. OBJECT TRACKING ..45
A. INTRODUCTION..45
B. OVERVIEW OF THE HARDWARE AND SOFTWARE

PRODUCTS..46
1. Crossbow Overview ...46
2. Mote-KIT2400 – MICAz ...47

a. MICAz Processor/Radio Boards - MPR2400 (MICAz)48
b. MTS300CA / MTS310CA ...48
c. MIB510 Serial Interface Board..49

3 Crossbow Software Solutions..50
a. XMesh Network Stack...50
b. MOTE-VIEW Client Software..51
c. XServe..54
d. Surge Network Viewer (Surge-View)55

4. MSP410 Mote Security System...56
a. Overview ..56
b. Proposed Deployments..57
c. Systems Components...59
d. MSP410CA (mote) MICA2 Platform Core

(Microcontroller, Radio)...59
e. MSP410CA (mote) Sensing Subsystem, Passive Infrared

(PIR) Sensor..62
f. MSP410CA (mote) Sensing Subsystem, Magnetic Sensor63
g. MSP410CA (mote) Power Characteristics64
h. MBR410CA Mote Base Station ..65

C. TSSRV3...66
1. Overview ...66
2. Hardware ..67
3. System Architecture...68

 ix

4. Software Components..69

IV. OBJECT-TRACKING APPLICATION: ARCHITECTURE AND
IMPLEMENTATION ...71
A. APPLICATION REQUIREMENTS AND DESIGN

CONSIDERATIONS ...71
B. APPLICATION SCENARIOS ...73

1. Straight Road Scenario..74
2. T-Road Scenario...74
3. Crossroads Scenario ..75

C. FINDING SENSOR’S TOPOLOGY ...76
1. Straight-Road Node Topology ..77
2. T-Road and Crossroads Node Topology..78

D. PROGRAMMING LANGUAGE...80
E. OBTAINING DATA FROM THE SENSOR NETWORK........................80
F. ANALYSIS OF RAW DATA..82

1. Step 1: Object Detection..82
2. Step 2: Characterization of the Detected Object83
3. Step 3: Storing Object Data ..83
4. Step 4: Updating the Thresholds ..83
5. Step 5: Checking the node FIFO ..84
6. Step 6: Producing the Direction Output ..84
7. Step 7: Producing the Speed Outputs ..84
8. Step 8: Informing the Neighboring Nodes85
9. Step 9: Removing the Old Data ..88

G. PROGRAMMING ISSUES AND ASSUMPTIONS...................................88
H. SOFTWARE COMPONENTS...89

1. User Interface Component ..91
2. Data Acquisition Component..95
3. Algorithmic Component..96
4. Information Flow ...99
5. Object-Tracking Outputs..100

V. TESTING AND EVALUATION..103
A. HARDWARE TESTING AND EVALUATION.......................................103

1. RF Range Test ..103
2. Environmental Influence on the PIR Returns...............................104
3. Sensor Sensing Range and Detection Probability106

a. Vehicle Detection Experiment ..106
b. Human Detection Experiment..110

B. OBJECT-TRACKING APPLICATION: TEST AND EVALUATION.112
1. Evaluation of the Object-Tracking Application............................112
2. Object-Tracking Application Deployment Recommendations....118

VI. DISCUSSION ...121
A. SUMMARY AND CONCLUSIONS ..121
B. FUTURE WORK...122

 x

APPENDIX. OBJECT-TRACKING SOURCE CODE......................................125

LIST OF REFERENCES..271

INITIAL DISTRIBUTION LIST ...275

 xi

LIST OF FIGURES

Figure 1. A simple ad-hoc network representation ...7
Figure 2. Mesh Topology ..8
Figure 3. Integration of a Wireless Sensor Network and the Internet (Zhao &

Guibas, 2004)...10
Figure 4. State transition diagram of a sensor node (Wang, Hassanein & Xu, [2005]) ..16
Figure 5. Cross Layer protocol stack for WSNs (Wang, Hassanein, & Xu 2005)..........19
Figure 6. WSNs’ architectures: An overview based on Al-Kraki and Kamal (2005)....20
Figure 7. Topology of a dense wireless sensor network (Holger & Willig, [2005]).......21
Figure 8. Wireless sensor network topology after reducing transmission power

(Holger & Willig, 2005) ..21
Figure 9. Example of WSN three-tier architecture (Yarvis & Ye, 2005).22
Figure 10. Multihop clustering architecture (Yarvis & Ye, 2005)....................................23
Figure 11. Star and peer-to-peer topologies in LR-WPAN: (IEEE 802.15.4 Standard

(IEEE, 2003). ...28
Figure 12. LR-WPAN architecture: (IEEE 802.15.4 Standard, 2003)..............................29
Figure 13. PPDU format based on the IEEE 802.15.4 standard (IEEE, 2003).30
Figure 14. General MAC frame format: IEEE 802.15.4 standard, (IEEE, 2003)31
Figure 15. Beacon frame format (IEEE 802.15.4 standard, 2003)....................................32
Figure 16. Data frame format (IEEE 802.15.4 standard, 2003) ..32
Figure 17. Acknowledgement frame format (IEEE 802.15.4 standard, 2003)32
Figure 18. Command frame format (IEEE 802.15.4 standard, 2003)32
Figure 19. Example of a superframe structure (IEEE 802.15.4 standard, 2003)33
Figure 20. Communication from a device to a PAN coordinator in (a) a beacon-

enabled network, and (b) a nonbeacon-enabled network (IEEE 802.15.4
standard, [IEEE, 2003]). ..34

Figure 21. Communication from a PAN coordinator to a device in (a) a beacon-
enabled network, and (b) a nonbeacon-enabled network (IEEE 802.15.4
standard [IEEE, 2003]) ..35

Figure 22. Overview of the coverage for different wireless communication standards
(Heily, 2004) ..36

Figure 23. IEEE 802.15.4/ZigBee stack (ZigBee, 2005) ..37
Figure 24. ZigBee network topologies (Kinney, 2005)...38
Figure 25. ZigBee secure frame in MAC layer (ZigBee specifications, 2005).................39
Figure 26. ZigBee secure frame in network layer(ZigBee specifications, 2005)..............39
Figure 27. ZigBee secure frame in application layer (ZigBee specifications, 2005)........40
Figure 28. Typical networking application component graph (Culler, Jason,

Buonadonna, Szewczyk & Woo, 2001)...42
Figure 29. Overall System High-Level View..46
Figure 30. Photo of the entire Mote-KIT2400 – MICAz (http://www.xbow.com)...........48
Figure 31. MPR2400-MICAz with standard antenna (Crossbow, 2005)..........................48
Figure 32. (a) MTS300CA and (b) MTS310CA (Crossbow, 2005)49

 xii

Figure 33. MIB510CA (Crossbow 2005)..50
Figure 34. Three-layer software framework for a wireless sensor network: MOTE-

VIEW 1.0 User’s Manual (Crossbow 2005)..52
Figure 35. Screenshot presents MOTE-VIEW “Data” view received from MSP410

system: MOTE-VIEW 1.0 User’s Manual (Crossbow 2005)..........................53
Figure 36. Screenshot presents THE MOTE-VIEW “Chart” view received from the

MSP410 system: MOTE-VIEW 1.0 User’s Manual (Crossbow 2005)...........53
Figure 37. Screenshot presents MOTE-VIEW “Topology” view received from

MSP410 system: MOTE-VIEW 1.0 User’s Manual (Crossbow 2005)...........54
Figure 38. Surge’s output for a Wireless Sensor Network Topology and Statistics:

Getting started Guide (Crossbow, 2005). ..55
Figure 39. HistoryViewer output for a Wireless Sensor Network Data Topology and

Statistics: Getting started Guide, Crossbow, 2005). ..56
Figure 40. High-level view of Mote Security System Deployment Overview (MSP

410) ..57
Figure 41. MSP410 deployment for perimeter monitoring: MSP410 Series User’s

Manual (Crossbow 2005)...58
Figure 42. MSP410 deployment for a dense grid monitoring: MSP410 Series User’s

Manual (Crossbow 2005)...59
Figure 43. (a) Mote’s high level view and (b) Mote’s basic block diagram

MSP410_Datasheet (http://www.xbow.com) ..60
Figure 44. (a) Photo of a MICA2 (MPR4x0) without antenna, (b) MICA2block

diagram of a MPR/MIB User’s Manual (Crossbow, 2005).............................61
Figure 45. MBR410CA, MSP410 base station ...66
Figure 46. TSSRv3 Hardware Components (a) 4XEM Elite2 miniPC, (b) Creative

WebCam, (c) FTP Server, (d) Globalstar Satellite Phone (TNT report,
2005) ..67

Figure 47. TSSRv3 ad-hoc network and uplink connectivity (TNT report, 2005)69
Figure 48. TSSRv3 downlink(TNT report, 2005)...69
Figure 49. TSSRv3 Software Modules and Information Flow (TNT report, 2005)70
Figure 50. Straight-Road Scenario and its main directions...74
Figure 51. T-Road Scenario and its main directions ...75
Figure 52. Crossroads Scenario and its main directions ...75
Figure 53. Node topology in the straight-road scenario and the magnetic and PIR

sensing area..78
Figure 54. Nodes topology in the T-road scenario and the PIR sensing area.79
Figure 55. Nodes topology in the crossroads scenario and the PIR sensing area.79
Figure 56. AM message format, University of California (2000-2003)80
Figure 57. Data-field message format for the MSP 410 system.81
Figure 58. Neighbor Nodes’ updates for a target object with and without knowing the

object’s direction for the straight road scenario...85
Figure 59. Neighbor Nodes’ updates for a target object with and without knowing the

object’s direction for the crossroads scenario’s corner nodes86

 xiii

Figure 60. Neighboring Nodes’ updates for a target object with and without knowing
the object’s direction for the straight road scenario in the algorithm’s
second version..87

Figure 61. Neighboring Nodes’ update for a target object with and without knowing
the object’s direction for the crossroads scenario’s corner nodes in the
algorithm’s second version ..87

Figure 62. Object-tracking application components ...90
Figure 63. Object-tracking application: Complete UML diagram....................................91
Figure 64. Object-tracking application: Simple UML diagram ..91
Figure 65. Object-tracking application’s user interface overview92
Figure 66. motionDetectionsystem class diagram...94
Figure 67. Class diagram for the motionDetectionSystem inner classes94
Figure 68. Node class diagram..95
Figure 69. SerialReader class diagram..96
Figure 70. Class diagram for the motionDector class ...97
Figure 71. Class diagram for the waitTime class ..98
Figure 72. Class diagram for the scenarios classes ...98
Figure 73. Information flow inside and outside the object-tracking application99
Figure 74. Object-tracking application’s output in the GUI window..............................100
Figure 75. Object-tracking application’s output in the command line window..............102
Figure 76. Fluctuation of the returned PIR value..105
Figure 77. Temperature change...105
Figure 78. Average returned PIR values per distance from a car’s path.........................107
Figure 79. Average returned mag values per distance from a car’s path108
Figure 80. Change in the number of detections as the distance from a car’s path

increased. ...108
Figure 81. Node topologies that affect the system’s performance.109
Figure 82. Average returned PIR values per distance from the human’s path................110
Figure 83. Change in the number of detections as the distance from the human’s path

increased ..111
Figure 84. Pictures taken during the final object-tracking application tests: Fort Ord

California, August 2005...114
Figure 85. Pictures taken by the TSSRv3 system during the application’s test at

Camp Roberts, California, May 2005 ..115
Figure 86. Pictures taken from the TSSRv3 system during the application’s test at

NPS, Monterey, California, May 2005. ...116
Figure 87. Pictures taken by the TSSRv3 system during the application’s test at

Camp Roberts, California, August, 2005...117
Figure 88. Pictures taken by the TSSRv3 system during the application’s test at

Camp Roberts, California, August, 2005...117

 xiv

THIS PAGE INTENTIONALLY LEFT BLANK

 xv

LIST OF TABLES

Table 1. Frequency bands and data rates for IEEE 802.15.4 based on the IEEE
802.15.4 standard (2003). ..30

Table 2. MSP410CA Mote PIR Sensor’s specification and Performance based on
the MSP410 Series User’s Manual (Crossbow, 2005).....................................63

Table 3. MSP410CA Mote Magnetic Sensor’s specification: MSP410 Series User’s
Manual (Crossbow, 2005)..64

Table 4. Motes’ power requirements for various operations based on the MSP410
Series and MPR/MIB User’s Manual (Crossbow, 2005)65

Table 5. Object-tracking application’s outputs ..101

 xvi

THIS PAGE INTENTIONALLY LEFT BLANK

 xvii

LIST OF ABBREVIATIONS AND ACRONYMS

AES Advance Encryption Standard

AM Active Messages

AP Access Point

CAP Contention Access Period

CCA Clear Channel Assessment

CFP Contention Free Period

COTS Commercial-Of-The-Shelf

CSMA/CA Carrier Sense Multiple Access with Collision Avoidance

CSV Comma Delimited Text

DARPA Defense Advanced Project Agency

ED Energy Detection

FCS Frame Check Sequence

FSK Frequency Shift Keying

FTP File Transfer Protocol

GTS Guaranteed Time Slot

GUI Graphical User Interface

IEEE Institute of Electrical and Electronic Engineers

ISP In System Processor

LLC Logical Link Control

LQI Link Quality Indication

LR-WPAN Low Rate WPAN

LSB Least Significant Bit

 xviii

MAC Medium Access Control

MFR MAC Footer

MHR MAC Header

MPDU MAC Protocol Data Units

MSP Mote Security Package

NTS National Traffic System

OSI Open Systems Interconnection

PHY Physical Layer

PIR Passive Infrared

PPDUs Protocol Data Units

PRNET Packet Radio Network

RTS/CTS Request-To-Send/Clear-To-Send

SSCS Service Specific Convergence Sublayer

SURAN Survivable Radio Network

TSSR Tactical Remote Sensor System

WLAN Wireless Local Area Network

WSN Wireless Sensor Networks

WPAN Wireless Personal Area Networks

ZDO ZigBee Device Objects

 xix

ACKNOWLEDGMENTS

This thesis is dedicated to my family. My lovely wife, Maria and our children

Spyridon-Alex and Vasilios have constantly supported me with their love,

encouragement and patient.

I would also like to acknowledge my advisors Gurminder Singh and Arijit Das for

their continue guidance mentorship and support throughout this thesis. They have

patiently encouraged my efforts with their inspirational comments. Without their help,

this work would never reach the level of quality that I have always wanted in my life

 xx

THIS PAGE INTENTIONALLY LEFT BLANK

 1

I. INTRODUCTION

A. BACKGROUND
Although the concept of wireless ad-hoc networks and infrastructureless

communication has been researched for more than three decades, its subcategory,

wireless sensor networks, is brand new. While still young, wireless sensor networks and

their applications have attracted the interest of the research and industrial communities.

Wireless sensor networks are the realization of embedded networks, in which

networks of interconnected devices are set into larger systems and environments. They

behave as instruments capable of covering large areas providing detailed information.

The sensor networks are a new aspect in the IT field and a great research area for the

computer scientists, involving systems design, networking issues, programming models,

distributed algorithms, data management, and security (Culler & Hong, 2004).

Sensor networks provide the ability to accurately observe and interact with

systems and phenomena in “real time”. They aim to be part of a range of applications that

includes environment observation, security enforcement, monitoring and management of

machinery, and package and container protection. In addition, sensor networks may have

an indoor use as control system for temperature and lights (Culler & Hong, 2004).

To work as an embedded network the sensor devices must be small, and

preferably battery-powered, be capable of working for a long period of time, and be

expendable as well. Moreover, because a sensor network can contain thousands of

devices, they must be cost-effective to develop, deploy, program, use, and maintain.

Thus, sensor networks could present a significant challenge for study and

experimentation (Culler & Hong, 2004).

B. OBJECTIVES
In the last two to three years a number of theoretical and/or simulation studies

were done on the topic of object-tracking. While these studies are useful, they are too

general and provide little guidance for the actual deployment of sensor networks for real-

life location-tracking of an enemy.

 2

This thesis focuses on developing an object-tracking application and prescribes

sensor network configurations that work well with our algorithms. We implement our

software using Crossbow hardware technology. The major issues addressed in this project

are the evaluation and efficient use of a wireless sensor network product with no changes,

in a real-world application, and efficient ways to algorithmically analyze the collected

raw data from the specific wireless sensor networks product.

Although the focus is the development of a real-world application using wireless

sensor networks, it also provides be a great opportunity to explore the new area of

wireless communication overall.

C. RESEARCH QUESTIONS
Our primary target is an exploration and study of the field of sensor networks.

The study addresses the following questions.

What is a sensor network?

What requirements do sensor networks address?

What are their main ideas and concepts?

What are the applications of sensor networks?

What are the associated technologies?

What are the standards that sensor networks use?

What are the existing hardware implementations that use this particular

technology?

What are the current software solutions that facilitate sensor networks

implementations?

How can we build new applications using sensor networks systems?

What do sensor network systems require for general or specific

applications?

 3

Are they applicable? And what is the appropriate design for sensor

network implementations in order to combine them with other existing

systems?

At this point we describe and evaluate the specific object-tracking application to

be built.

D. SCOPE
The study area of the thesis is an overview of the wireless sensor-network

technology, an evaluation of a specific wireless sensor network product, and an

implementation of an object-tracking application. Thus the study is divided into two

parts. Part one is an overview of wireless sensor networks . it includes an evaluation of

the product and an assessment of a specific sensor network system; general

characteristics. The second part is based on the evaluation results; it describes the

implementation of the object-tracking algorithm. The object-tracking application receives

and uses the raw values returned by the sensor network system to produce clear and

meaningful outputs. The outputs are then easily intergraded into a larger application, or

are used independently as the output of a specific isolated application.

E. METHODOLOGY
The object-tracking application is based on an existing Crossbow wireless sensor

network product without making any additional internal changes. All the data evaluation

filtering and algorithmic manipulation takes place in the base station (PC) where the

network’s data finally arrives. This choice supports the developer’s intention to deploy an

application by using a specific product with a minimum amount of changes. The

application deployment includes the design and the implementation parts. The design

stage is an iterative process and as the most critical stage requires theoretical knowledge

of wireless sensor network technology. In addition, it requires sufficient knowledge of the

abilities and specifications of the wireless sensor network product that it uses. The

implementation part, although it may seem straightforward, has some programming

difficulties. The Java program, which is our programming language choice, must

implement precisely the algorithmic part of the design. Finally, the evaluation of the

Crossbow product and the object-tracking application phases includes indoor and outdoor

 4

experiments under different conditions and scenarios and by using different objects

(human, car, etc.).

F. THESIS ORGANIZATION
Chapter II provides an overview of the wireless technology, describes the

concepts of wireless ad-hoc mesh networks, and introduces the new area of wireless

sensor networks. It describes possible wireless sensor network applications and related

architecture and networking issues, and also introduces the sensor networks’ constraints

and concerns. Finally, it apposes current related industry standards to this wireless

technology.

Chapter III describes the software and hardware components related to the object-

tracking application. It begins with Crossbow wireless sensor network products and

continues with the software solutions that the company provides. The final part of the

chapter contains a short description of the TSSRv3 system. This system is heavily used

during the object-tracking application implementation as an interconnecting system

which is fed with the object-tracking application’s outputs.

Chapter IV describes the object-tracking application, including the application’s

design considerations and the configuration issues. The chapter then describes the

algorithmic manipulation and the application outputs, based on the data returned from the

Crossbow wireless sensor network. Finally, it describes the programming implementation

of the above algorithm.

Chapter V includes our conclusions from the experimental results of the

Crossbows products and the object-tracking application and makes deployment

recommendations. Finally, chapter VI overview the entire study and makes

recommendations for future research.

 5

II. WIRELESS SENSOR NETWORKS

A. INTRODUCTION TO WIRELESS SENSOR NETWORKS

1. Development of Wireless Networks
The wireless communication field has had a long history; development in the field

began years ago, at the beginning of the twentieth century. One of the first wireless

paradigms was the War Department Radio Net established by the U.S. Army Signal

Corps in 1921. By the end of 1933, this nationwide radiotelegraphic network could

manage more than a million words annually. Interestingly, many of the early Morse

wireless networks were the result of collaboration between the army and amateur civilian.

Although many of the stations were operated by volunteer amateurs, the Army-Amateur

Radio System (AARS), established in 1925, was a well organized system based within

the Army structure (Callaway, 2004).

Though the early wireless networks were simple, compared to the today’s, they

used many of the ideas still in use today and demonstrated similar implementation

difficulties. Most of the networks used the same tree-based structure as that of many

modern wireless networks. And even before World War I the amateur operators used the

ad-hoc network idea to overcome the transmission-range limitation when relaying their

messages. The operator’s availability restrictions, on the other hand, are an example of

the early wireless networks weaknesses analogous to the power-consumptions and

message-delay concerns of current systems. Medium Access Control (MAC) techniques

also evolved, which enable networks to avoid the hidden-terminal problem, by using

manual Request-To-Send/Clear-To-Send (RTS/CTS) messages. After World War II, the

National Traffic System (NTS), as well, implemented standardized message format and

an early multicast message option (Callaway, 2004).

Those early paradigms of wireless communication networks demonstrated the

basic concepts and architectures of the later implementations. Limitations such as low

transmission power, data throughput, and manual station operation indicated concepts

similar to successor wireless ad-hoc mesh networks.

 6

2. Ad-Hoc Networks: Introduction
While some of the concepts of ad-hoc networking are older, the first successful

wireless data-communication network that applied the concepts of a random-access

protocol and a medium access-control method was the ALOHA system. ALOHA is a

packet-based, single-hop, two-radio-frequency channels project designed by the

University of Hawaii to offer interactive data communication between the university and

the Hawaiian islands (Callaway, 2004).

ALOHA’s successor was the Packet Radio Network (PRNET) developed by the

U.S. Defense Advanced Project Agency (DARPA) to improve the ALOHA project. The

PRNET provides a multi-hop feature capable of supporting communication over a wide

geographical area. The system’s infrastructure includes mobile stations, mobile radio

repeaters, and wireless terminals (Karapetsas, 2005). The PRNET introduced many new

technologies and concepts for ad-hoc networks. First, it used direct-sequence spread-

spectrum transmission, supporting up to 138 network entities with high data rates.

Network management flow- and error-control were additional new elements also

introduced by the PRNET system. As were routing-table update solutions, initiated to

support point-to-point and broadcast routing (Callaway, 2004).

Although PRNET gave great actuation to the ad-hoc networks field, it was not

without flaws. Limitations such as the relatively small network size (138 nodes), the

nodes’ size and power characteristics, and security issues were not addressed until the

early 1980s with the development of the Survivable Radio Network (SURAN) (Callaway,

2004).

The decreasing cost of hardware and software, the heightening of computational

power, and the capabilities of small mobile devices, combined with the Internet explosion

in the early 1990s, triggered the research community’s interest in ad-hoc networks. The

systematic research in the ad-hoc area created a need for standardization in the protocols

and technology. In 1990, the Institute of Electrical and Electronic Engineers (IEEE)

established an 802.11 subcommittee for wireless local-area network (WLAN)

standardization. The 802.11 standard, released in 1997, supports ad-hoc peer-to-peer,

infrastructure based, with access points (AP) connectivity. As its channel method the

802.11 standard uses carrier sense multiple access, with collision avoidance (CSMA/CA).

In the context of the current technology, the IEEE 802.11 wireless LAN is a

common example, which many authors use to support the ad-hoc definition. Ad-hoc

networking is a subset of infrastructure-less communication. Stallings (2002) defines the

ad-hoc wireless LAN as “a peer-to-peer network (no centralized server) set up

temporarily to meet some immediate need,” and adds, “there is no infrastructure for an ad

hoc network. Rather, a peer collection of stations within range of each other may

dynamically configure themselves into a temporary network.” Peterson and Davie (2003)

define an ad-hoc mobile network as “a group of mobile nodes that form a network in the

absence of any fixed nodes.” Moreover, Kurose and Rose (2003) define the ad-hoc

concept through the IEEE 802.11 as a system in which “stations can also group

themselves to form an ad hoc network - a network with no central control and with no

connections to the “outside world.” Here, the network is formed “on the fly”, simply

because there happen to be mobile devices that have found themselves in proximity to

each other, that have a need to communicate, and that find no preexisting network

infrastructure (for example, a preexisting 802.11 BSS with an AP) in their location.”

Figure 1 demonstrates an ad-hoc network based on the above definitions.

Figure 1. A simple ad-hoc network representation

 7

3. Wireless Ad-Hoc Mesh Networks: Characteristics
A wireless ad-hoc mesh network can be considered as a subset in the ad-hoc

networks category. As a subset, it inherits the valuable characteristics of the ad-hoc

networks and optimizes their usage through a mesh topology. Thus, in general, a wireless

ad-hoc network is defined by its ad-hoc capabilities and by the characteristics of the mesh

topology that it uses.

The most important ad-hoc feature of a wireless ad-hoc mesh network is that it is

self–organizing. This concept refers first to nodes’ ability to identify their environment

by discovering adjacent nodes. Wikipedia (Wireless Mesh Network, 2005) explains that,

by using proper dynamic-routing protocols, the nodes update their routing tables and

determine the most advantageous paths for forwarding the information hop-by-hop to its

destination. The network formation is included in the system characteristics; it does not

require any kind of coordination or administration; the network is formed “on the fly”

(Kurose & Rose, 2004).

Feibel (1996) defines mesh topology as “a specific type of point-to-point

connection in which there are at least two direct paths to every node….A more restrictive

definition requires each node to be connected directly to every other node.” The mesh

network lacks a centralized base station; every node is free to communicate with any

other network’s node within its radio range. Figure 2 illustrates this layout.

Figure 2. Mesh Topology

 8

 9

ure phenomenon and increase the system’s robustness and reliability.

Moreov the expanded, providing rapid area

coverag

ted to pervasive computing

(Callaw

as enabled the development of small-size, low-cost, power-efficient multifunctional

ebpage, 2005), and their development cost will be drastically reduced,

generat

Mesh topology consolidates the above ad-hoc characteristics. It adds a self-

healing feature, so the network, by supporting multiple connections for each node, is able

to work efficiently even if it looses some of the nodes. If a system has a node failure, the

node’s neighbors find another route to forward their data. Thus the network is more

reliable.

To summarize, wireless ad-hoc networks are self-organizing, self-healing, and

adaptive. Ohrtman and Roeder (2003) refer to a wireless mesh networks as “an exciting

new topology for creating low-cost, high-reliability wireless networks,” and continues,

“in a mesh network, each wireless node serves as both an AP and a wireless router,

creating multiple pathways for the wireless signal.” The redundant connections avoid the

single-point-of-fail

er, wireless ad-hoc networks can easily be

e. The mesh topology enables the related systems to support both fixed and

mobile nodes. Finally, increasing nodes density provides more available bandwidth and

increases the system’s stability (Wikipedia “Wireless Mesh Network” webpage, 2005).

Wireless ad-hoc mesh networks are a great step toward ubiquitous computing. The

wireless sensor networks that the following sections introduce use the wireless ad-hoc

mesh network concept, but their target seems to be mostly rela

ay, 2004).

4. Wireless Sensor Networks: Overview
The progress in wireless communications, digital electronics, and micro systems

h

sensors. Moore’s law predicts a great future for this technological field. In the future the

typical sensor nodes the size “of a 35 mm film canister” (Wikipedia, Wireless Sensor

Network W

ing an explosion in the wireless sensor network usage.

Wireless sensor networks (WSN) is a rich domain that involves both hardware

and system design. It consists of sensor devices that are “small in size and able to sense,

process data, and communicate with each other, typically over an RF (radio frequency)

 10

he existing Internet deep into the physical environment. The

resulting network is orders of magnitude more expansive and dynamic than the current

TCP/IP network.” Figure 3 provides an illustration of a sensor network and Internet

integration. A complete WSN implementation is a “macroscopic view” (Carle & Simplot-

Ryl, 2004) of the environment, implementing pervasive computing, it “enable us to

observe and interact with physical phenomena in real time at a fidelity that was

previously unobtainable.” (Carle, & Simplot-Ryl, [2004]). WSN is a new, interesting, and

active research area; it introduces various challenges and concerns; the following section

highlights some of them.

channel” (Haenggi, 2005). Their purpose is to collect and process data from the

environment, produce a detection event and then forward the information to a specific

destination.

Wireless sensor networks are a specialization of the wireless ad-hoc mesh

networks. They inherit all the ad-hoc and mesh characteristics described above. They are

wireless self-organizing, self-healing, and adaptive networks. They contain a large

number of small, inexpensive, low-power nodes and use specialized communication

techniques and routing, like “an asymmetric many-to-one data flow” (Carle & Simplot-

Ryl, 2004) to communicate. Nodes’ characteristics (size, lifetime, computational power),

system’s architecture, and protocols enable WSN to be deeply embedded into the

environment. If these capabilities will be combined with the Internet, an “embedded

Internet” (Culler & Hong, 2004) will be produced. Zhao and Guibas (2004) accent that

“sensor networks extend t

Figure 3. Integration of a Wireless Sensor Network and the Internet (Zhao & Guibas, 2004).

 11

s
Martin Haenggi (2004) specifies precisely the basic characteristics that the WSN

have, in

in the latter three characteristics. Zhao and Guibas (2004) identify “limited hardware,”

“limited support for networking,” and “lim

ks concept began to improve the

compu s app attributes make them adaptable to a

great ra

5. Wireless Sensor Network: Constraints and Challenge

cluding the following:

Self-organizing capabilities

Short-range broadcast communication and multi-hop routing

Dense deployment and cooperative effort of sensor nodes

Frequently changing topology due to fading and node failures

Limitations in energy, transmitted power, memory, and computing power.

They also highlights that the WSN differ from the wireless ad-hoc mesh networks

ited support for software development” as

general WSN design and implementation challenges. Wang, Hassanein, and Xu (2005)

add “data redundancy,” the diversity of the possible application, and security and privacy

concerns. Before some of the above concerns are analyzed further, we will discuss in the

following section the important WSN applications that set the requirements and drove a

WSN development.

B. WIRELESS SENSOR NETWORKS: APPLICATIONS AND
MOTIVATION
Implementations that use computers have existed for a long time, and computing

is already an integral part of our life, heavily used in many aspects of our civilization. In

addition to traditional systems, the sensor networ

ter’ licability. Sensor networks’ pervasive

nge of applications. Their design supports high-level information-processing tasks

such as “detection, tracking, or classification” (Zhao & Guibas, 2004). Culler, Estin, and

Srivastava (2004) see a rough differentiation of sensor networks’ applications into three

monitoring categories related to space, things, and the interaction of things with each

other and their environment. The overview of possible applications for wireless sensor

 12

nitoring

ansfer and reducing the

initial d

me wireless sensor networks.

The us

networks that follows is based on the Haenggi (2005), Callaway (2004), Culeer, Estin,

and Strivastava (2004), and Culler and Hong (2004).

1. Industrial Control and Mo
The deployment of wireless network sensors in the industrial control-and-

monitoring field seems very prominent. Normally, a factory has a control room to

monitor and control the state of the plant and the condition of the equipment. Specific

critical values, like temperature or pressure, are collected from the plant or the

equipment. The values describe the plant’s or the equipment’s condition, which is then

forwarded to the control room where it is evaluated. Traditionally, industrial control and

monitoring requires the deployment of a complex, expensive wired network. Sensor

networks can replace the wired network, providing reliable data tr

eployment and maintenance cost.

Lighting, ventilation and air-conditioning are other possible areas for wireless

sensors. WSN provide the flexibility to support dynamic changes in the environment.

This is also enhanced by the WSN programming feature, which offers secure and

balanced services (e.g., balanced heating and air conditioning). When used to control and

monitor complex equipment like robots, or other rotating and moving equipment, WSN

provide the necessary flexibility. Thus, the system’s reliability is increased, because

damage caused by the machinery’s movement is avoided. In addition, small-size sensing

nodes can be used where wired implementations are impossible.

2. Home Applications
Ho automation is another large application area for

es in the industrial applications field described above also apply to home

implmentations. Centralized control of home appliances has already been implemented

by using wired solutions or other wireless technology solutions. Their replacement by a

wireless sensor network provides a development and maintenance cost reduction, system

flexibility, and stretch ability. WSN also provides total, and secure control of the home

devices. Another area for the use of WSN that is relevant to home application is the toy

industry, a large market. The nature of wireless networks enable toys to behave in

complex and logical ways at a reasonable cost..

 13

4) refer to the environmental monitoring of

WSN i eme . Wireless networks can be used for

habitat

SNs to identify themselves (Callaway,

2004). plementation can improve “military command,

control

itions and responds to an enemy

breachi tion.”

handlers a

3. Environmental and Agricultural Monitoring
Culeer, Estin, and Strivastava (200

mpl ntations as pioneers in this technology

monitoring and ecosystem measurements. Haenggi (2004) finds that seismic

activity, forest fire, floods and water quality also can be detected and localized by the use

of WSNs. Culler and Hong (2004) claim that the outdoor deployment, low power

operation, fault tolerance, data quality, and networking characteristics of WSNs are ideal

for environmental applications. Moreover, given those characteristics, WSNs can be used

for agricultural purposes. Better knowledge of the agricultural environment enables the

more precise control of fertilizers, water management cost reduction, quality

maximization and environment protection.

4. Military and Security Applications
As with almost any new technology military and security application are

recommended uses for wireless sensor networks. WSNs can assist or replace quards

around a building or camp perimeter. Target localization and identification is another

potential use, whereby friendly troops use W

Haenggi (2005) finds that such im

, communication and computing (C4)” schema. Additionally, he describes an

application for “surveillance and battle-space monitoring” in which the proper sensors are

deployed in the ground or are carried by unmanned vehicles to monitor opposing forces.

Haenggi (2005) mentions other potential uses in an “urban warfare” field: “to prevent

reoccupation” of buildings that have already been cleared; and for “self-healing

minefields,” where, instead of a “static complex obstacle,” the WSNs provide “an

intelligent, dynamic obstacle that senses related pos

ng attempt by physical reorganiza

5. Asset Tracking
Among the potential uses of wireless sensor networks, asset tracking is also a

large area of interest for military and commercial application. Calllaway (2004) describes

a possible use: for tracking “shipping containers both in a port and on a ship. By placing

WSN nodes inside each container, it and its content become recognizable from a

distance. An exact knowledge of the container’s type and position can save

 14

great a nnecessary errors. The WSNs provide a cost-

effectiv

d Willig (2005) place the applications based on the sources-and-sinks

interact

is

the object’s position and possibly its speed and

directio

mount of time by preventing u

e way to increase the “shipper’s productivity.”

6. Heath Monitoring
Haenggi (2005) identifies two different wireless sensor network medical

applications that are expected to rapidly increase. First, he mentions “medical sensing” in

which data such as “body temperature, blood pressure, and pulse,” collected from the

system, can be transmitted to a local or remote computer for health monitoring uses.

Additionally, WSNs can be used in the “micro-surgery” field, where tiny medical

instruments are used to perform “ microscopic and minimal invasive surgery.”

7. Application Categories
The above applications show that, among the WSN applications, there are some

common features. Holger and Willig (2005) identify the existence of data “sources” and

“sinks” in most of the WSN applications in which the “sources” are the nodes that sense

the data from the environment and the “sinks” are the nodes where the data arrived, like

gateways. The “sinks” can be WSN components or they can sit outside the system.

Holger an

ion in four categories. The first category is “event detection,” is which the

sources, when they detect an event send messages to the sinks. An event could be a single

value, for example, an above threshold humidity, or a complicated type. Holger and

Willig’s second category is “periodic measurements,” in which the sources periodically

send messages to the sinks. The third category comprises “function approximation and

edge detection” in which the WSN system, based on specific finite values, approximates

an “unknown function.” The final category is “tracking” in which the event producer

mobile, and thus a WSN is used to detect

n.

The preceding section included categories and possible implementations of

wireless sensor networks. According to Haenggi (2005), the opportunities for the WSNs

are “ubiquitous.” Zhao and Guibas (2004) find that “the main long-term will be the

increase in the number of sensors per application and the increase in the decentralization

of sensor control and processing.” However, the relevant constraints and challenges, that

 15

ER MANAGEMENT

end user.” Despite the fact that they are revolutionary, affecting a

great v e rks have many constraints and challenges.

One co

nt. The next sections discuss

those tw

to operate continuously. The nodes’ “dynamic power optimization” is described by

are mentioned above will be further analyzed in the next sections. They must be

addressed for easier and faster deployment of the wireless sensor network applications.

C. POW
Wang, Hassanein and Xu (2005) state that wireless sensor networks “outperform

conventional sensor systems, which use large, expensive macrosensors to be placed and

wired accurately to an

olum of applications, wireless netwo

nstraint perhaps the most important, is the system’s limitation in its power supply

lifetime. Most WSN system applications include a requirement for a maximum possible

lifetime. In contrast, the core element of a sensor network is normally a battery powered

node. As a result, the power management in wireless sensor network is extremely

important.

Power management can be divided into two categories: the node’s level and

architecture and the topology system’s power manageme

o approaches.

1. Node’s Power Management
A wireless sensor network, in general contains four components. First, the

microprocessor and memory unit is capable of performing the node’s processing and

logic tasks. Second, the sensor component is responsible for monitoring the environment.

Third is the communication element which supports data transmission and reception.

Finally, “a real-time micro-operating system controls and operates the sensing,

computing, and communication units through microdevices drivers and decides which

parts to turn off and on” (Wang, Hassanein, & Xu, 2005).

As Holger and Willig (2005) explain, the power management begin with the

proper design and selection of the above components: “design low-power chips is the

best starting point for an-energy-efficient sensor node.” Holger and Willig also say that,

in addition to the design optimization, careful control and operation of the nodes

improves the energy efficiency. Normally, depending on the system’s environment, the

nodes do not detect great or frequent changes; thus a wireless sensor node does not have

 16

 of the nodes

should switch to a lower power state between consecutive bursts. They identify the

g,

ready, observing, standby, sleep, and off,” (Figure 4). To maintain the system’s

functio ty, er conservation and latency, the proper

design and algor

Wang, Hassanein, and Xu (2005) as a power management proposal. They note that the

WSNs’ workload is characterized by “burstiness.” As a result, some parts

possible power states that a node can have as the following: “transmitting, receivin

nali QoS, and balance between pow

ithms must be used. Additional power can be saved by varying the

system’s performance based on current needs. Wang, Hassanein, and Xu (2005) describe

this variability as the “computational workload.” They conclude that, currently, the

workloads are “mostly nondeterministic” for producing an accurate model.

igure 4. State transition diagram of a sensor node (Wang, Hassanein & Xu, [2005])

2. System’s Power Management
Another alternative in the nodes’ power management is transmission power

optimization. It is included in the system’s power management because a transmission

power level adjustment affects many portions of a wireless sensor network system. The

nodes’ communication range, network topology and architecture, path selection, and

retransmission rate are some of the aspects that are affected by transmission power. A

power adjustment is restricted by propagation characteristics of the medium and by the

nodes’ limitations. The power level tuning can be made at the node level or at the system

level (Wang, Hassanein, & Xu, 2005).

F

power, because the distance to the next one is small enough. This deployment produces

Application requirements and topology management also have an impact on the

system’s power management. An application that requires dense deployment for better

area coverage and detection accuracy means that that node can reduce the transmission

 17

er manipulation. A proper selection of

rith

or “traf

 and the system’s correct architecture

choice required.

D.

s we

presented an o sible applications of WSN. In addition, we

noted the con

intentions. The purpose of the

following sect s is esign objectives and the possible

deployment strategies and

er of

sensing device hus nvironment;

redundant data, however, that the system has to manage. In addition, the data must be

transferred from the nodes to the end point for furth

algo ms and communication protocols, like “rotate the node functionality periodically”

fic distribution and system partitioning” (Wang, Hassanein, & Xu, 2005), helps to

maintain the energy balance among the nodes. For data processing to the nodes before its

transmission, “data aggregation” (Wang, Hassanein, & Xu, 2005), or raw data forwarding

is another choice that the system’s designer has to make, in trying to find the balance

between latency and power consumption.

In summary, the power management in wireless sensor network systems is an

important but difficult task. The designer has to compromise between the application

requirements and the technological hardware restrictions. The nodes’ proper

configuration, algorithm, and protocol selection,

(presented in the next section) are

TOPOLOGY ARCHITECTURE AND NETWORKING-ROUTING ISSUES
The development of wireless sensor networks is a new, rapidly growing

technology that supports a great variety of applications. In the preceding section

verview of current and pos

straints and challenges that the wireless network has to consider and

overcome. Deployment strategies and systems architecture are closely related to the

networking and routing issues. In wireless sensor networks, network characteristics and

routing protocols illustrate the designer’s architectural

ion to provide an overview of the d

systems architectures.

1. Design Objectives
In wireless sensor network design the following design objectives aim to

overcome the different challenges and to suffice the application based requirements

(Holger & Willig, 2005, Wang, Hassanein, & Xu, 2005, Al-Karaki & Kamal, 2005)

a. Sensor Devices

Many wireless sensor applications require the use of a large numb

s. T the sensors must be small so they don’t disorder the e

 18

they must be c

ost, easy maintenance, and expandability,

the system mu be

design should

ction will accommodate the above objectives.

 Resource-Efficient Design

st

be adopted to m i

 be

self-configurable and able to establish and maintain network connectivity. The network

connectivity s tained automatically, whenever nodes

experience fail

ing
In other network paradigms, data is requested from the sender. In wireless

sensor networks, the data request is based on certain attributes, not on the node’s address.

And, in data-centric networks like WSNs, the nodes do not need to have a unique ID.

heap to reduce the application’s total cost; and they must be compact so

that they can be used outdoors and are energy efficient.

b. Scalability, flexibility, and QoS
To support a low deployment c

st scalable and flexible. In addition, the wireless sensor network’s

eliminate data redundancy by using in-network data aggregation, localized

processing, and data fusion, which support efficient, accurate, and on-time data delivery.

Finally, a system’s QoS reliability and fault tolerance must be in balance with the

resource constraints and application requirements. Careful design, proper systems

architecture, and routing protocol sele

c. Application-Specific and
Resource-efficient design-and-application requirements are critical. Most

of the time, the system’s architecture and protocols must be application specific; a

universal design is not currently available. Additionally, power-saving techniques mu

axim ze the system’s lifetime.

d. Self-Configuration and Adaptability
It is possible for a WSN’s application to use a large number of nodes and,

sometimes, to deploy them randomly. To correspond to the challenges, nodes have to

hould be performed and main

ures or change states.

e. Locality of Information
The exact position of a node is very important in wireless sensor networks.

Only with knowledge of the nodes’ location can the related data have meaning. It also

makes network discovery, data and query addressing, and network maintenance easier.

f. Attribute-Based Naming and Data Centric Rout

 19

g. Cross-Layer Design
Wireless ad-hoc networks, like all traditional networks, use a layered

protocol stack. This approach has many advantages: simplicity, robustness, and

scalability. However, each layer in the stack is isolated. The WSN’s resource constraints

are unable to support a traditional layered design. A cross-layer stack is probably the best

solution, to support real-time data collection and transmission with limited resources.

Figure 5 demonstrates a possible cross-layer protocol stack for WSNs.

Figure 5. Cross Layer protocol stack for WSNs (Wang, Hassanein, & Xu 2005)

2. Topology and System’s Architecture
Wireless sensor networks’ characteristics and challenges, as well as the above

mentioned design objectives, create a necessity for topology and systems architecture

selectio

 and Willig (2005) define the “topology control” that exists “to deliberately

restrict

 introduced

n. The most restricted feature of WSNs, in relation to networking and routing, is

the power constraint, because it reduces the available transmission power, which, in turn,

affects the communication range of the individual nodes. Data transmission is the nodes’

most consuming function. Wang, Hassanein, and Xu (2005) summarize this point

precisely: “the energy consumed by communication is much higher than that for sensing

and computation.” Normally, the nodes are deployed in dense patterns to ensure

coverage, communication channels, and detection precision.

Holger

 the set of nodes that are considered neighbors of a given node. This can be done

by controlling transmission power, by introducing hierarchies in the network and

signaling out some nodes to take over certain coordination tasks, or by simple turning off

some nodes for a certain time.” Earlier, in the power management section, we

 20

ting

s routing

arizes the

F

sink. Typically, by performing transmission power

control and proper modulation, the number of neighbors can be reduced (Holger & Karl,

2005). Although that type of restriction improves network performance, Holger and Karl

are against the notion of flat networks, because they produce differences between the

nodes (heterogeneity). Various flat-architecture-based protocols have been proposed in

the literature. Al-Kraki and Kamal (2005), for example, mention some of them: Sequence

Assigment Routing (SAR), Directed Diddusio, and Minimum Cost Forwarding

ideas and proposals to minimize the network system’s power consumption. This section

will introduce recent research about wireless sensor networks’ networking-rou

architectures.

Al-Kraki and Kamal (2005), in their discussion about the WSN’

protocols, note that, “in general, routing in WSNs can be divided into flat-based routing,

hierarchical-based routing, and adaptive-based routing.” Figure 6 summ

possible WSN architectures, some of which are introduced in sections below.

Architectures in WSNs

Negotiation
Based

Flat Query
Based

igure 6. WSNs’ architectures: An overview based on Al-Kraki and Kamal (2005)

a. Flat Network Architecture
In flat network architecture all nodes have identical characteristics and can

perform the same tasks. Yarvis and Ye (2005) refer to the network’s nodes as “complete

interchangeable.” In flat architecture, all the nodes are considered neighbors, and all are

able to detect and forward data to the

Hierarchical

MultiPath
Based

Adaptive
Based

 21

Algorithm ission

power control.

Figure 7.

Figure 8. Wirel sens olger &

. Figures 7 and 8 present a dense flat network with and without transm

 Topology of a dense wireless sensor network (Holger & Willig, [2005])

ess or network topology after reducing transmission power (H
Willig, 2005)

b. Hierarchical and Cluster-Based Network Architecture
Hierarchical and cluster network architectures are not new topologies

introduced in wireless sensor networks. They were originally used in wired networks.

However, their “scalability and efficient communication” (Al-Kraki & Kamal, 2005)

advantages are utilized by the WSNs, providing power consumption reduction. The

hierarchical architecture assumes that the nodes are heterogeneous. Yarvis and Ye (2005)

explain that in a tiered architecture “the functions of sensing, computing, and data

delivery are divided unequally among nodes.” The nodes belonging to the same level of

hierarchy have the same tasks. Yarvis and Ye also note that the “functional

decomposition of a sensor network can reflect physical characteristics of nodes, or it can

simply be a logical distinction.” Examples of roles for a node are sensing, data

 22

aggregation, and backbone communication. If the nodes have the same characteristics,

they can periodically change roles. Figure 9 demonstrates a possible three-tier

architecture of a WSN, that is also connected to the Internet.

Figure 9. Example of WSN three-tier architecture (Yarvis & Ye, 2005).

According to Holger and Willig (2005), clusters are a “slightly different”

architecture than the hierarchical; they are “subsets of nodes that together include all

nodes of the original graph such that, for each cluster, certain conditions hold.” Each

cluster has a cluster-head; the rest of the nodes are a one-hop distance from the cluster-

head. Wang, Hassanein, and Xu (2005) add that “clusters replace the one-hop long-

distance transmission by multihop short-distance data forwarding.” The cluster

architecture characteristics allow simpler routing protocols to be used inside the cluster

Guibas and Zhao (2004). Al-Kraki and Kamal (2005) mention some of the proposed

hierarchical or cluster-based protocols: LEACH protocol, PEGASIS, TEEN and

APTEEN, SMECN etc. Figure 10 exhibits a multihop clustering architecture.

Figure 10. Multihop clustering architecture (Yarvis & Ye, 2005).

The three main network architectures described above, despite their

advantages, also have drawbacks. The flat topology, although attractive, is very difficult

to implement. On the other hand, the tiered architectures introduce hot spots and

overhead into the network.

The three major architectures support a variety of routing protocols. Al-

Kraki and Kamal (2005) introduce the adaptive routing, multiple routing, query-based

routing, and negotiation-based protocols. A proper routing-protocol selection is based on

the underline architecture and the application’s specific characteristics. Because this

section focuses on introducing the wireless-sensor-network field, it skips descriptions of

routing protocols, and continues with an overview of different deployment strategies.

3. Deployment Strategies
Deployment strategies are an important aspect of wireless sensor networks.

Although the sensors’ deployments are application specific, they share a common

objective. Different strategies aim to properly cover the area of interest by using the

minimum number of nodes. Wang, Hassanein, and Xu (2005) place the deployment

strategies in four different categories: “predetermined, self-regulated, randomly

undetermined, or biased distribution.” The following sections introduce the

aforementioned categories.

 23

 24

a. Predetermined
A predetermined strategy is used in a situation in which the deployment

environment is known or a grid-based topology can be maintained. This strategy provides

the ability to control the area coverage and the deployment cost maintaining a high QoS .

There are two main difficulties of this strategy: first, that the deployment environment

knowledge is a rare situation. Secondly, as the number of nodes increases the

“computational complexity” also increases.

b. Self-Regulated
The self-regulated strategy is the strategy that describes a scenario in

which the nodes are deployed automatically in an unknown environment. Although a

proper selection of the number of sensors maintains the deployment cost at an acceptable

level, like the predetermined strategy, it has high computational complexity.

c. Randomly Undetermined
The randomly undetermined strategy is the strategy suitable for the

deployment of a large number of nodes in a hostile environment in which the nodes are

not placed, but spread. The advantage of this strategy is that the deployment cost is low,

but it cannot guarantee uniform coverage.

d. Biased Distribution
Finally the biased distribution strategy can be described as a version of the

randomly undetermined strategies. The nodes in this strategy are mainly deployed in a

random manner, but, in specific geographical locations, the random deployment is biased.

E. SECURITY AND PRIVACY CONCERNS
Holger and Willig (2005) underline that security, especially “network security is

one of the most pressing concerns in all wireless networks, including wireless sensor

networks.” Privacy and security are crucial parts of wireless network system architecture.

In addition, security and privacy are important requirements for many applications. The

primary force for the development of security functions in WSNs is the military

application area. Commercial applications also require security, but they are more

interesting in the privacy issues. This section will present an overview of the security and

privacy aspects of WSNs.

 25

Slijepcevic, Wong, and Potkinjak (2005) note that WSNs have four main security-

related properties, the first of which is the application’s requirements and architecture.

Wireless sensor networks provide enough flexibility to the designer to prioritize, adjust,

and improve security and privacy aspects based on the application’s requirements. To

satisfy them, the designer has also to deal with the WSN’s limited resources. The

restrictions in energy, computational power, storage, and size constrain the possible

security solutions. Slijepcevic, Potkinjak, and Wong (2005) state that there is a “trade-off

between resources spent on security and the achieved protection.” In addition to the

resource constraints, the environment, in general, is hostile. The WSNs can be deployed

in a battlefield or inside a forest. Moreover, the nodes can be visible and accessible to

anyone. Finally, the nodes, in order to save power, prefer to perform additional

computations to reduce the number of transitions in “in-network processing.” This

property is suitable for security implementations. However, in a situation in which a node

may be captured, the adversary will have access to the security material.

Perrig, Stankovic, and Wagner (2004) point out that, because of the above

properties and concerns, “traditional security techniques used in traditional networks

cannot be applied directly.” They also say that security is related to every aspect of the

system design. The following sections discuss some WSN parts that are described in

Perrig, Stankovic, and Wagner (2004).

1. Key Establishment and Trust Setup
WSNs properties, especially their node-limited computational capabilities, do not

allow the use of traditional “key-establishment” solutions such as public-key

cryptography. Moreover, the key-establishment becomes more complicated because of

the system’s scale and the communication patterns between the nodes. The shared-key

solution also does not work because a node compromise allows decryption of the entire

traffic. On the other hand, the solution that uses a symmetric key between each pair of

nodes addresses the above problem, but it does not scale well. Another option is the use

of a unique key between each node and the base station, but this makes the base a station

single point of failure. Key distribution is an active research area. A recent proposal is a

“random-key redistribution protocol,” in which a pair of nodes uses a share key from a

 26

pool. Different pairs of nodes must use different keys. In this solution, the adversary has

to compromise a number of nodes to reconstruct the key pool. Further research and

development in the last approach is expected.

2. Secrecy and Authentication
The common approach used to achieve secrecy and authentication is

cryptography. Earlier WSN solutions involved link-layer cryptography, which is simple

enough. To improve the security performance, later approaches propose “software-only

cryptography.” The University of California, Berkeley, implementation of TinySec is an

example that improves the system’s security with only 5%-10% performance overhead.

3. Privacy
Privacy issues have arisen based on the ubiquitous nature of WSNs, especially for

commercial systems. The nodes’ size, which become smaller, and the improvement of

nodes’ capabilities may support improper uses of WSN systems.

4. Communication Robustness
A denial-of-service attack is always possible in a WSN implementation,

especially because of the low node transmission power. Currently, the spread-spectrum

communication technique is the first measurement. Additionally, the networking

characteristics of the WSNs can be used to avoid that kind of attack by rerouting the

traffic through the system’s unaffected parts.

To summarize, security is always a concern, especially in wireless

implementations. As WSNs are a more restricted wireless communication, any kind of

security-feature implementation seems more difficult. The standardization of wireless

sensor networks that is introduced in the next section, by focusing the research

community, could be a step toward to efficient solutions.

F. PROTOCOLS AND INDUSTRY’S STANDARDS FOR WIRELESS
SENSOR NETWORKS

Although many applications for wireless sensor networks are proposed, the

communication protocols supporting them remain mainly unexplored and diverged. This

is because the area of interest is new, each implementation is application specific, and the

components of WSNs have a lot of constraints.

 27

Wireless sensor networks use the wireless medium to communicate. However, the

traditional communication protocols that support wireless communications, especially ad-

hoc mesh networks, may not be well suited for them. WSN communication is an active

research area, and many algorithms and protocols have already been proposed. This

section introduces two proposed standards: the IEEE 802.15.4 and the ZigBee. The IEEE

802.15.4 covers the physical layer and the Medium Access Control (MAC) layer of low-

rate Wireless Personal Area Networks (WPAN). The ZigBee is “an emerging standard

that is based on the IEEE 802.15.4 and adds network construction (star networks, peer-to-

peer/mesh networks, cluster-tree networks), application services, and more” (Holger &

Willig, 2005).

1. 802.15.4
Holger and Willig (2005) mention home automation, home networking, and home

security as possible applications for IEEE 802.15.4. They add that “most of these

applications require only low-to-medium bitrates (up to some few hundreds of kbps),

moderate average delays without too stringent delay guarantees, and for certain nodes it

is highly desirable to reduce the energy consumption to a minimum.”

The IEEE 802.15.4 standard (2003) defines the device types that can be used in a

Low Rate WPAN (LR-WPAN). A device can be a Full-Function Device (FFD) or a

Reduced-Function Device (RFD). The RFD can be used in simple applications in which

they do not need to transmit large amounts of data and they have to communicate only

with a specific FFD. The FFD can work as a Personal Area Network (PAN) coordinator,

as a coordinator, or as a simple device. It can communicate with either another FFD or a

RFD.

In keeping with the application requirements, the LR-WPAN operates in a star or

peer-to-peer topology (Figure 11). In the star topology the RFD communicates with a

single controller, the PAN coordinator. The PAN coordinator can perform the same

function as the RFD, but it is also responsible for controlling the PAN; “it initiates,

terminates, or routes communication around the network” (IEEE 802.15.4 Standard,

2003). The peer-to-peer topology supports ad-hoc mesh multihop networking. Any

device in the peer-to-peer topology can communicate with any other device within its

communication range; however, this topology also has a PAN coordinator. All the

devices in a LR-WPAN have a unique 64-bit address. This or a short address, allocated

by the PAN coordinator, can be used inside a PAN. Additionally, each PAN has a unique

identifier. The combination of the PAN identifier and the sort addresses allows

communication across different PANs (IEEE 802.15.4 Standard, 2003).

Figure 11. Star and peer-to-peer topologies in LR-WPAN: (IEEE 802.15.4 Standard (IEEE,

2003).

The LR-WPAN based on the open systems interconnection (OSI) seven-layer

model has the layered architecture presented in Figure 12. The application and the

network layer are the upper layers in the LR-WPAN architecture, but are outside the

scope of the IEEE 802.15.4 standard. Only the physical layer, “which contains the Radio

Frequency (RF) transceiver along with its low-level control mechanism,” and the MAC

layer “that provides access to the physical channel” are included in the standard and will

be introduced in the following sections. Finally, the Type I 802.2 Logical Link Control

(LLC) and the Service Specific Convergence Sublayer (SSCS) are intermediate sublayers

supporting communication with the above layers (IEEE 802.15.4 Standard 2003).

 28

Figure 12. LR-WPAN architecture: (IEEE 802.15.4 Standard, 2003).

a. Physical Layer
The 802.15.4 standard specifies two different services that the physical

layer (PHY) provides. The PHY data service controls the radio, and thus, the

transmission and reception of the PHY Protocol Data Units (PPDUs). In addition, the

management service performs Energy Detection (ED) in the channel. The management

service also performs Clear Channel Assessment (CCA) before sending the messages and

provides Link Quality Indication (LQI) for the received packets.

Three different bands are defined by the standard. The 868-868.6 MHz for

Europe, the 902-928 MHz for North America, and the 2400-2483.5 MHz worldwide. All

of them belong in the Industrial, Scientific, and Medical (ISM) radio bands and they are

using Direct-Sequence Spread Spectrum technique (DSSS). Each of the bands supports

different a data rate and it uses a different modulation technique, chip rate, and number of

channels. Moreover, if the system does not use the 2450 MHz frequency, it operates in

both the 802 MHz and 902 MHz frequencies. The following table summarizes the

supported bands and data rates (IEEE 802.15.4 standard, 2003).

 29

 30

PHY
(MHz)

Frequency band
(MHz)

Modulation Bit Rate Number of Channels

868-868.6 BPSK 20 1 868/915

902-928 BPSK 40 10

2450 2400-2483.5 O-QPSK 250 16

Table 1. Frequency bands and data rates for IEEE 802.15.4 based on the IEEE 802.15.4
standard (2003).

The physical layer uses PPDU packets to communicate. Figure 13

demonstrates its structure. The least significant bit (LSB) is always transmitted and

received first. The synchronization header (SHR), contains the preamble and the Start of

Frame (SFD) fields, which helps receiver synchronization. The 8-bytes preamble contains

only zero and is used for synchronization. The SFD contains a specific sequence of one

and zeros and specifies the beginning of the frame. The PHY Header (PHR) contains the

payload length. Packets with a length of 9 or more bytes are MAC Protocol Data Units

(MPDU), as the next section further explains. Packets with length 5 are used for MPDU

acknowledgements. The payload part of the PPDU encloses the MAC layer packet.

Finally, the PPDU size can be up to 127 bytes (IEEE 802.15.4 standard, 2003).

4 bytes 1 byte 1 byte variable

Preamble SFD Frame length

(7 bits)

Reserved

(1 bit)

Payload (PSDU)

SHR PHR PHY payload

Figure 13. PPDU format based on the IEEE 802.15.4 standard (IEEE, 2003).

b. MAC Layer
The MAC layer is the interface between the SSCS and the PHY layer.

Similar to the PHY layer, the MAC layer supports two services. The MAC data service is

responsible for the transmission and reception of the MPDUs through the PHY data

service. The MAC management service, if the device is a coordinator, manages the

network beacons. It is also responsible for PAN association and disassociation, frame

validation, and acknowledgment providing “a reliable link between two peer MAC

entities.” In addition, it uses the CSMA-CA for channel access and handles and maintains

the Guaranteed Time Slot (GTS) mechanism. Finally, it supports device security (IEEE

802.15.4 standard, 2003).

The IEEE 802.15.4 standard defines four different frame types: the

beacon, data, acknowledgment, and MAC command frame. All frame types are based on

the general MAC frame format (Figure 14). The frame control field describes and

specifies the above different frame types. Every MAC frame comprises a MAC Header

(MHR), which consists of a frame control, sequence number, and the information field. It

also contains the MAC payload; different frame types have different MAC payload

fields. The acknowledgment type does not have a payload. Finally, each frame includes a

MAC Footer (MFR), which contains a Frame Check Sequence (FCS). The data in the

MPDU follows the same order as the PPDU: the least significant bits are left in the frame

and are transited first.

Figure 14. General MAC frame format: IEEE 802.15.4 standard, (IEEE, 2003)

The following figures present the four different MAC frame types. The

beacon frame is transmitted periodically by the PAN coordinator. It provides information

about the network management through the superframe and GTS fields, which are

analyzed later in the section. It also synchronizes the network devices and indicates the

proper communication period for them. The data frame payload encapsulates data from

the higher layers. When a device receives a packet, it is not obliged to response with an

 31

acknowledgement packet. Finally, the command frame identifier and command payload

fields of the command frame are used for communication between the network devices.

The command identifier specifies actions like association, disassociation, and data, GTS

or beacon request.

Figure 15. Beacon frame format (IEEE 802.15.4 standard, 2003)

Figure 16. Data frame format (IEEE 802.15.4 standard, 2003)

Figure 17. Acknowledgement frame format (IEEE 802.15.4 standard, 2003)

Figure 18. Command frame format (IEEE 802.15.4 standard, 2003)

 32

In the LR-WPAN, every PAN has its own coordinator. The PAN

coordinator manages the communication in the local area; it has two options, to use or not

use the superframe structure. The superframe (Figure 19) uses network beacons. If the

coordinator does not want to use a superframe structure, it suspends the beacon

transmission. However, the beacon is important for device association and disassociation.

If the coordinator wishes to maintain close communication control in the PAN, and to

support low-latency devices, it usually uses the superframe. A superframe determines a

specific time period; beacons bound it. The beacon is transmitted in the first of the

sixteen equal time slots that the superframe has. It is used to “synchronize the attached

devices, to identify the PAN, and to describe the structure of the supeframe.” The

superframe can have active and inactive periods. All the communications have to be

finished inside the superframe period. In the inactive periods the devices can switch to

the sleep mode, but they have to be ready for the next beacon. The active period is further

divided into a Contention Access Period (CAP) and a Contention Free Period (CFP).

During the CAP, any device can communicate, competing with the other devices in the

PAN using slotted CSMA-CA. The CFP contains GTSs and follows the CAP. A CFP

may maintain up to seven GTSs and each GTS can reserve more than one time slot.

However, the CAP should always be sufficient to allow new devices t join the PAN. The

GTSs are allocated to specific devices. All the transactions must be completed inside the

assigned time period (CAP, GTS, CFP) (IEEE 802.15.4 standard, 2003).

Figure 19. Example of a superframe structure (IEEE 802.15.4 standard, 2003)

 33

In accordance with the 802.15.4 standard (2003), three different types of

data-transfer exist. In addition, the types differ if the coordinator uses or does not

beacons. Data transfer from a device to the PAN coordinator is the first type (Figure 20).

For a “nonbeacon-enable network,” it first senses the medium by using “unslotted

CSMA-CA” and then a simple transmit to the data frame. In a “beacon-enabled

network,” the sender waits for the beacon; when it finds it, “the device synchronizes to

the superfame structure.” In the specified time frame, the sender again senses the medium

by using “slotted CSMA-CA” and transmits the data to the coordinator. In either case, the

coordinator has the option to acknowledge or not acknowledge the data reception; after

that, the transaction is completed.

(a) Beacon-enabled network (b) Nonbeacon-enabled network

 34

Figure 20. Communication from a device to a PAN coordinator in (a) a beacon-enabled
network, and (b) a nonbeacon-enabled network (IEEE 802.15.4 standard, [IEEE,

2003]).

Data transfer from the coordinator is the next type described in the

standard (2003). In a beacon-enabled network the coordinator indicates a pending

message through the beacon. The message’s target device receives the beacon and if the

message is pending, it responses with a MAC command request message, using slotted

CSMA-CA. the coordinator may or may not acknowledge the command message and

through slotted CSMA-CA sends the pending message. The device acknowledges the

received message. After that, the coordinator removes the message from the beacon’s

pending list and completes the transaction. In a nonbeacon-enable network the device

periodically sends a MAC command-request frame to the coordinator. The coordinator

acknowledges the data request. Then, by using unslotted CSMA-CA, if it has a pending

message it transmits it. If it has not it respond with a data frame with a “zero-length

payload.” To complete the transaction the device acknowledges the data reception.

(a) Beacon-enabled network (b) Nonbeacon-enabled network

Figure 21. Communication from a PAN coordinator to a device in (a) a beacon-enabled
network, and (b) a nonbeacon-enabled network (IEEE 802.15.4 standard [IEEE,

2003])

Peer-to-peer is the last type of data transfer. In this situation the devices

are free to communicate with any other device within their communication range. In a

peer-to-peer PAN the devices can “either receive constantly or synchronize with each

other.” If they are receiving constantly, to transmit data they use unslotted CSAM-CA. In

the second case, synchronization must be achieved first (IEEE 802.15.4 standard [IEEE,

2003]).

The IEEE 802.15.4 (2003) standard establishes MAC and PHY standards

for low-cost, low-power, and high-density node deployments. In addition to the above

 35

PHY and MAC characteristics, IEEE 802.15.4 provides a security baseline, including

“the ability to maintain an Access Control List (ACL) and use symmetric cryptography”

for data encryption. The algorithm that is used for encryption is the Advance Encryption

Standard (AES). However, the higher level layers decide when security is need. The

upper layers are in general responsible for device authentication and key management.

The next section introduces the ZigBee standard, which encapsulates the IEEE 802.15.4

and provides additional standardization for the higher levels.

2. ZigBee
Heily (2004) defines ZigBee as “a rapidly growing, worldwide, non-profit

industry consortium” whose mission is “to define a reliable, cost-effective, low-power,

wirelessly networked, monitoring and control product based on an open global standard.”

The following figure illustrates the areas of interest for different wireless communication

standards.

Figure 22. Overview of the coverage for different wireless communication standards (Heily,

2004)

ZigBee, a new standard which became publicly available in June 2005, is based

on the IEEE 802.15.4 standard. It expands the IEEE 802.15.4 by adding the framework

for “the network, security and application” (Craig, 2005). The following figure presents

the IEEE 802.15.4/ZigBee stack and the areas of responsibilities.
 36

Figure 23. IEEE 802.15.4/ZigBee stack (ZigBee, 2005)

Craig (2005) mentions three networking topologies that the standard covers: the

star, mesh, and cluster tree (figure 24). The ZigBee standard works on top of the IEEE

802.15.4 addressing schema by using the standard 64-bit and the short 16-bit addressing.

Kinney (2005) summarizes the ZigBee network layer responsibilities: the successful

establishment of a new the network, and successful new device configuration, addressing

assignment, network synchronization, frames security, and message routing.

ZigBee further distinguishes the concept of the physical devices (RFD, FFD) by

using the notion of “logical devices.” “ZigBee Coordinator” is the first type of logical

devices. It is responsible for initializing, maintaining, and managing the network. Under

the coordinator in the network hierarchy is the “ZigBee router,” which is responsible for

controlling the message routing between the nodes. Finally, the “ZigBee End Device”

acts as the end point of the network structure. The tasks that an end device can perform

are specified in the “Application Profiles” (Craig, 2005).

 37

Figure 24. ZigBee network topologies (Kinney, 2005)

The ZigBee specifications (2005) summarize the security services provided by

ZigBee: “key establishment, key transport, frame protection, and device management.”

ZigBee builds its security mechanism using symmetric key cryptography. The security

services also depend on the associated layer, thus as the Figure 23 shows, the security

mechanism covers the network and the application layer. In addition, if a MAC frame

needs security protection, the MAC layer is able to secure it. Moreover, the notion of

end-to-end security is supported; the source and destination devices have access and use

the same share key.

In the MAC layer the 802.15.4 AES mechanism provides the proper security. The

mechanism protects “the confidentiality, integrity, and authenticity of the MAC frames”

(Kinney, 2005). An auxiliary header field in front of the MAC payload indicates if the

frame is encrypted or not. The MAC frames’ integrity is supported by calculating and

using a Message Integrity Code (MIC) at the end of the MAC payload. In addition to the

 38

AES, nonce is used to provide MAC confidentiality and authenticity. The following

figure illustrates a MAC frame with security. For different security aspects the MAC

layer uses different mode of the AES: for the encryption it uses the AES in Counter

(CTR) mode, and for the integrity, the Cipher Block Chaining (CBC-MAC). Finally, the

combination (CCM) of the above two modes is available, providing both encryption and

integrity (Kinney, 2005).

Figure 25. ZigBee secure frame in MAC layer (ZigBee specifications, 2005)

In the network layer the CCM* (a modified MAC layer CCM mode) is used for

encryption. Because the network layer uses only the CCM* mode, a single key is used for

all different security options. The network layer security message format is similar to the

MAC frame; it is presented in the following figure. Finally, although the network layer is

responsible for securing its layer messages, the above layers specify the keys and the

CCM* option for each frame (Kinney, 2005).

Figure 26. ZigBee secure frame in network layer(ZigBee specifications, 2005)

 39

Security in the application layer works similar to the network and MAC layers. It

uses the “link key” or the “network key” to secure the message and then encapsulate it

inside a set of fields similar to the network format (figure 27). Other security

responsibilities that the application layer has are to provide the ZigBee Device Objects

(ZDO) and the applications with device management services, key establishment, and

key transport (ZigBee specifications, 2005).

The ZigBee application layer contains the manufacturer-defined application

objects, the ZDO and the application sub-layer. In addition to the security

responsibilities, the application sub-layer binds devices based on their duties and needs,

maintains the binding tables, and forwards messages between them. The application sub-

layer also discovers the neighbor devices for a given device. The ZDO is responsible for

determining the device’s duty in the network, for communicating using binding requests,

and for supporting security, as was mentioned above. The sub-layer that implements the

actual application is the manufacturer-defined application object (Kinney, 2005).

Figure 27. ZigBee secure frame in application layer (ZigBee specifications, 2005)

The ZigBee specifications are a great step toward the wireless sensors networks

standardization. They cover all the OSI layers, from the physical to the application

providing guidance to the developers. The specifications are the product of the ZigBee

alliances, a consortium of companies and academic institutes. Thus they not only produce

 40

 41

the specifications, but also are the first use them. The next section goes beyond the layer

architecture and standardization and introduces the operating systems (OS) field, another

crucial element of WSNs.

G. TINYOS
The above sections provided a brief description of the representative wireless

sensor networks industry standards related to specific architecture layers. The purpose of

this section is to introduce operating systems suitable for a WSN implementation and its

nodes. There exist a number of real-time operating systems, some of which are VxWorks,

WinCE, PalmOS, and QNX, but it seems that they do not meet the needs of the wireless

sensor networks. A prominent solution specifically designed to satisfy WSNs’

requirements is TinyOS (Hill, Szewczyk, Woo, Hollar, et al., 2000).

Similar to the traditional conventional operating systems, TinyOS provides

abstractions of the physical devices. The approach is different because of the resource

constraints, the application-specific implementations, the necessary modularity, and, in

general, the WSNs requirements. TinyOs expresses the above abstractions using a simple

component model. A number of components are used to support a particular application.

The component model, in addition, uses an event-driven concurrency to satisfy properly

limited resource devices, which have to process a great amount of information on the fly

(Culler, Jason, Buonadonna, Szewczyk, & Woo, 2001), (Levis Madden, Gay, Polastre, et

al., 2004).

A TinyOS application consists of a set of components and a scheduler.

Components can be hardware abstractions, synthetic hardware, and high-level software.

Each component is described by four elements: a set of commands, a set of events, a

frame, and a set of tasks. All the commands, events, and tasks are executed in the context

of the frame. The sets of commands and events can also be described as the component’s

interface to the rest of the system. Commands can be defined as non blocking requests to

lower-level components to initiate an action; and they normally post a task for later

execution. They can also initiate lower component commands, but those have to be

completed in a short period of time. They cannot initiate events. Events represent

hardware events or the completion of commands. An event can store information to each

frame, fire higher level events, call lower level commands, or post tasks. Finally, tasks

are the component element that performs the main job. They are able to call lower level

commands, fire higher level events and post other tasks. (Hill, Szewczyk, Woo, Hollar, et

al., 2000), (Culler, Jason, Buonadonna, Szewczyk & Woo, 2001), (Levis Madden, Gay,

Polastre, et al., 2004).

The two-level scheduler’s hierarchy provides the TinyOS concurrency. The

scheduler allows the events to preempt tasks, but tasks have to run to completion related

to other tasks. Thus the desired concurrency inside a component is accomplished by the

asynchronous execution of the events and tasks. The following figure illustrates a typical

configuration for a networking sensor. It presents different types of components, the

information flow, the commands, the events, and the event handlers. (Hill, Szewczyk,

Woo, Hollar, et al., 2000), (Culler, Jason, Buonadonna, Szewczyk & Woo, 2001), (Levis

Madden, Gay, Polastre, et al., 2004).

 Command
 Event

Figure 28. Typical networking application component graph (Culler, Jason, Buonadonna,
Szewczyk & Woo, 2001)

 42

 43

The TinyOS library contains a great variety of networking applications capable of

supporting a variety of wireless ad-hoc mesh architectures supporting not only single-hop

routing but also multi-hop. The above application can be placed in three general

categories: “tree-based collection,” in which data are routed toward an end point; “intra-

network routing,” which describes data exchange between nodes inside the local network;

and “dissemination where data is propagated to entire regions” (Levis Madden, Gay,

Polastre, et.al., 2004). TinyOS uses the Active Messages (AM) concept to support the

networking and routing functions. AM supports message-based communication and is

also used in parallel and distributed computing systems. “The lightweight architecture of

Active Messages can be leveraged to balance the need for an extensible communication

framework while maintaining efficiency and agility.” The “event centric nature” of the

AM makes them suitable for wireless sensor network applications. AM implementation

“avoids busy-waiting for data to arrive and allows the system to overlap communication

with other activities” (Buonadonna, Hill, & Culler, 2005).

To summarize, this chapter has provided an overview and described the evolution

of wireless technology. It began with the concept of the wireless ad-hoc mesh networks

and continued by introducing the new area of the wireless sensor networks, their

applications, related concerns and issues, and, finally, the current WSN standards. Its

intention is to provide the reader with the theoretical background knowledge that is

necessary to understand the hardware and software products mentioned in the following

chapters and the algorithmic applications, such as the tracking object application

described in chapter IV.

 44

THIS PAGE INTENTIONALLY LEFT BLANK

 45

III. OBJECT TRACKING

A. INTRODUCTION
This chapter presents the components of a complete demonstration system, part of

which is Object-Tracking. The system receives inputs from the environment, manipulates

them, makes decisions, and proceeds with specific actions related to the tracking object.

The purpose of this work is to demonstrate a system that is capable of being a useful

plug-and-play implementation, is rapidly deployable, and is able to provide critical data

to a control station far from the system’s position. The system can be divided into three

parts: the sensor network, the tracking object application, and the action-perform TSSR

part.

The first components to be described are Crossbow’s hardware and software

products. They use many of the sensor network principles and ideas, already mentioned

in chapter 2. They comprise the basic function of the system and provide the important

initial raw data for further evaluation and manipulation. A subsequent chapter will

present preliminary testing and evaluation results of the Crossbow material.

The chapter also presents the TSSR subsystem, which consists of both hardware

and software parts. The subsystem detects objects by performing picture comparisons. It

then transmits those pictures to the control station by using satellite or cellular

communications. In the overall system, the subsystem is responsible for taking photos,

acting, at the proper time after the object’s detection, and tracking. In addition, it is

responsible for transmitting the photos and any additional information that characterizes

the object. The following figure presents a high-level view of the object-tracking

application and the TSSR system.

r

Wireless Sensor Ne

Satellite Communic

Wired Communicat

F

B. OVERVIEW

1. Cros
Before desc

tracking object ap

According to the co

“a leading supplier

and other instrume

wireless sensor net

sensors.” In the las

providing “sensing
WebCam
MSPP410 nodes

two

ati

ion

igu

 O

sb
rib

pli

m

of

nta

wo

t fe

 d
Base Station
FTP Serve

Satellite Phone
rk Communication

on

re 29. Overall System High-Level View

F THE HARDWARE AND SOFTWARE PRODUCTS

ow Overview
ing of the wireless sensor network system that is used by the

cation, it is important to provide its manufacturing profile.

pany’s web site (http://www.xbow.com), Crossbow Technology is

inertial sensor systems for aviation, land, and marine applications

tion sensors as well as the leading full-solutions supplier in the

rking arena and the only manufacturer of smart dust wireless

w years the company is constantly working in the wireless field

evices and mesh networking platforms” to a great variety of

 46

http://www.xbow.com/

 47

applications. By using UC Berkeley’s TinyOS operating system in the produced

platforms, its architecture is considered open source.

In the context of this thesis, two Crossbow sensor network solutions are used. One

is the Mote-KIT2400 – MICAz developer’s kit is a “Commercial Development Platform

for MICAz Motes.” This study uses this kit to explore the sensor network’s field and to

become familiar with WSN’s hardware implementations. The kit provided the ability to

program the nodes, by using netC, and to test different Crossbow software applications.

The following paragraphs briefly present the capabilities of that system.

The description of the Crossbow material is followed by an overview of the

software products that this project used. Finally, the subsequent sections present the

MSP410 Mote Security System, a Crossbow commercial product and the second and

main system used for this thesis.

2. Mote-KIT2400 – MICAz
This subsection provides a brief overview of the Crossbow development kit,

Mote-KIT2400–MICAz. Understanding the available hardware is an important step for

any kind of implementation. The company’s webpage (http://www.xbow.com) provides

an overview of the eight node kit. Mote-KIT2400–MICAz, which uses Crossbow’s new

processor/radio board, MICAz (MPR2400CA). The scope of the kit is primarily for

demonstration and testing; but it can also be used in real-world applications like

“residential and industrial building monitoring and security or in automotive networks.”

For that kind of use it probably needs changes, for example, the use of an outside cover

for the motes and the interface board. The parts that are contained in the kit are illustrated

in Figure 30 and discussed below.

Figure 30. Photo of the entire Mote-KIT2400 – MICAz (http://www.xbow.com)

a. MICAz Processor/Radio Boards - MPR2400 (MICAz)
Figure 31 presents one of the eight MICAz Processor/Radio Boards

contained in the kit. The MPR/MIB User’s manual (Crossbow, 2005) provides

information about the latest generation mote, MICAz, which is compliant with the IEEE

802.15.4 and ZigBee standards. The radio frequency transceiver is the Chipcon CC2420,

integrated with an Atmegal 128L micro-controller supporting wireless low-power sensor

networks. It works in the 2400MHz to 2483.5MHz band (ISM band) and uses direct

sequence spread spectrum techniques, which avoid RF interference and provide basic

data security. By using the TinyOS, the battery-powered MICAz is compatible with other

Crossbow software implementations.

Figure 31. MPR2400-MICAz with standard antenna (Crossbow, 2005)

b. MTS300CA / MTS310CA
The Mote-KIT2400 contains both MTS300CA and MTS310CA sensor

boards (Figure 32). The details below are derived from the MTS/MDA Sensor Board

User’s Manual (Crossbow, 2005).

 48

http://www.xbow.com/

Figure 32. (a) MTS300CA and (b) MTS310CA (Crossbow, 2005)

To support a range of applications, including vehicle detection, movement,

and others, these two sensor boards provide a variety of sensing capabilities. The most

basic sensors are the microphone and the sounder. “Acoustic ranging and general

acoustic recording and measurement” are the two main uses of the microphone. In

addition, audio files can be first recorded into the MICAz flash memory and then be

downloaded and analyzed. The sounder, or “buzzer,” is a “piezoelectric resonator”

producing a 4 KHz fixed frequency. Acoustic ranging is an application that uses the

sounder and the node acoustic detector (microphone).

Light and temperature comprise another set of sensors of both MTS300CA

the and MTS310CA. The maximum sensitivity of the photocell, CdSe, is at the 690 nm

wavelength. The thermistor (Panasonic ERT-J1VR103J), on the other hand, provides

output for temperatures from -40 to 70 Celsius degrees.

The MTS/MDA Sensor Board User’s Manual (Crossbow, 2005) specifies

additional sensing capabilities only for the MTS310CA. Those capabilities are the two-

axis Accelerometer and the two-axis Magnetometer. The accelerometer has 10-bit

resolution and is suitable for applications like “tilt detection, movement, vibration, and

/or seismic measurements.” The magnetometer is a Honeywell product (HMC1002) very

sensitive to small magnetic fields. It can be used to detect vehicles at a radius of 15 feet.

c. MIB510 Serial Interface Board
To support communication and programming with other systems the kit

includes the MIB510. The MPR/MIB user’s manual (Crossbow, 2005) provides the

following information for this product. The interface board serves not only the MICAz

 49

but also the MICA2, MICA, and MICA2DOT family products. In contrast to the

MTS300 and MTS310, the serial interface board in not battery powered. Figure 33 is a

top-view photo of a MIB150CA. The Atmega16L is the in-system processor (ISP); it runs

at a fixed rate of 115.2 kbaud to support motes programming. When the program is

downloaded from a PC to the ISP through a serial port RS-232, the ISP programs the

mote that is connected on top of the MIB510. Both the mote and the ISP share the same

RS-232. Motes programming means that, in addition to the kit, the user has to install

TinyOS in the PC as an important development platform.

Figure 33. MIB510CA (Crossbow 2005)

Although the Mote-KIT2400–MICAz is a development kit, its study was

very important. It gave an overview of a sensor network implementation. Moreover, it

provided an opportunity to test and improve the developer’s programming skills in

TinyOS and to examine the Crossbow implementations. In addition to the above

hardware, the tracking object application development used Crossbow software products

like MOTE-VIEW, not only with the Mote-KIT2400–MICAz but also with the MSP410

Mote Security System. The following is an overview of those Crossbow software

solutions.

3 Crossbow Software Solutions

a. XMesh Network Stack

The XMesh Network stack is Crossbow’s implementation for the wireless

ad-hoc mesh networks that its system uses. It was developed based on the IEEE 802.15.4

and ZigBee standards mentioned in previous chapters. Unfortunately, as a proprietary

protocol, the exact specifications were not available at the time this project took place.

 50

 51

b. MOTE-VIEW Client Software
In the MOTE-VIEW 1.0 User’s Manual (Crossbow, 2005) Crossbow says

that MOTE-VIEW is an important element of its software solutions. The importance of

MOTE-VIEW is precisely described in the definition as Crossbow’s primary user-

interface, sited between the user and an already deployed wireless sensor network. Its

purpose is to make the deployment and monitoring of the system easier. Additionally, it

supports wireless sensor data logging to a database, analysis, and presentation of those

data.

The MOTE-VIEW user’s manual image presented in Figure 34 shows a

complete three-layer wireless sensor network implementation architecture that part of it is

MOTE-VIEW. The client layer is where MOTE-VIEW is located, providing monitoring

interpretation and analysis of the raw data returned by the sensors. Those data arrive at

MOTE-VIEW through the second-server layer where they are first stored in a database

for logging purposes. Finally, in the mote layer, motes use the onboard sensor, and

through their program written in TinyOS, perform a specific task, gathering the proper

data for the application.

Crossbow claims that MOTE-VIEW supports all the company’s wireless

sensor network hardware. Initially, in the research part of this study, MOTE-VIEW was

used with the MICAz-based Mote-KIT2400. Later, throughout the first steps of the

tracking object application construction, MOTE-VIEW was used heavily, first for

understanding the MSP410 system’s topological and networking functions, and then for

investigation of the returning data. Additionally, MOTE-VIEW was used constantly

during the experiments for wireless sensor network system setup, monitoring, and

evaluation. When it was important, the database storage ability that it provides was used.

Finally, instead of the RS-232 an optional-part of the tracking object implementation

reads the sensors data from the MOTE-VIEW postgress database. This option requires

MOTE-VIEW installation in the system’s control station.

Figure 34. Three-layer software framework for a wireless sensor network: MOTE-VIEW

1.0 User’s Manual (Crossbow 2005)

As mentioned above the MOTE-VIEW’s primary objective is to provide

an easy, and functional graphical user interface. The following sections provide a brief

description of the interface’s functionality, as explained in the MOTE-VIEW user’s

manual (Crossbow, 2005).

Once a sensor network is setup and connected to the user’s computer,

which runs MOTE-VIEW, the user has the ability, after the proper database and firmware

application configuration, or after starting a “data log” menu option, to observe data from

the database. Figure 35 presents a screenshot of data returning from the MSP410 system.

Through the window, “data view” tab selection, the user is able to watch the sensor’s

data, the nodes status, and server’s possible messages.

 52

Figure 35. Screenshot presents MOTE-VIEW “Data” view received from MSP410 system:

MOTE-VIEW 1.0 User’s Manual (Crossbow 2005)

Additionally, the user can examine different aspects of the sensor network

system by selecting different menu options. The “Chart” tab provides the ability to

produce sensor’s historical data graphs: Figure 36 applies to the graphs that this view

provides. The “Chart” selection can present up to three different graphs from different

sensors, and up to twenty-four nodes can be selecting for plotting.

Figure 36. Screenshot presents THE MOTE-VIEW “Chart” view received from the MSP410

system: MOTE-VIEW 1.0 User’s Manual (Crossbow 2005)

 53

Figure 37 presents the final MOTE-VIEW presentation option, the

“Topology,” which is a drag-and-drop application that gives the user the ability to map

the network’s nodes, including position and parenting information. Moreover, the user

has the ability to insert background images, presenting properly the system’s real

development environment. All of the above three charts can be printed by using the print

option.

Figure 37. Screenshot presents MOTE-VIEW “Topology” view received from MSP410

system: MOTE-VIEW 1.0 User’s Manual (Crossbow 2005)

In addition, MOTE-VIEW can export the received data in two different

formats, XML or CSV (Comma Delimited Text). Finally, through “MoteConfig” the user

can program the motes. Actually, the user does not program the motes directly;

“MoteConfig” is a graphical interface that can be used to download pre-compiled TinyOS

applications. Thus, in addition to the convenience of “MoteConfig” it saves the user from

installing the TinyOS programming environment. However, full control and downloading

capabilities are provided only by using TinyOS.

c. XServe

XServe, as described in the MOTE-VIEW 1.0 User’s Manual (Crossbow,

2005) is a command-line tool that facilitates the sensor’s data readings. The user can use

XServe from a Cygwin command line, or as a data-logging server for MOTE-VIEW,

using the LogData menu.

 54

d. Surge Network Viewer (Surge-View)
Surge-View is another set of software tools provided by Crossbow. It

contains the Surge Graphical User Interface (GUI), the Stats, and the HistoryViewer

programs. Although the user is able to see the sensors’ board data through Surge, this tool

is mostly related to the system’s networking issues. Through the GUI, the user is able to

view the mote’s connectivity and routing statistics. Additionally, the network

performance can be stored in the control station (PC) for later usage. Stats provides data

about the network’s condition. Finally, HistoryViewer enables the network’s topology

and statistics playback. The following figures illustrate different outputs of the Surge-

View software product. (Getting started Guide, Crossbow, 2005).

Figure 38. Surge’s output for a Wireless Sensor Network Topology and Statistics: Getting

started Guide (Crossbow, 2005).

 55

Figure 39. HistoryViewer output for a Wireless Sensor Network Data Topology and

Statistics: Getting started Guide, Crossbow, 2005).

4. MSP410 Mote Security System

a. Overview
The Mote-KIT2400–MICAz was the first wireless network system that

this project worked on. Moreover, the project repeatedly used MOTE-VIEW and the rest

of Crossbow’s software products. However, the most important Crossbow element of the

tracking object application is the MSP410 Mote Security System, a battery-powered

eight-node kit targeted at serving security implementations. The MSP410 is the wireless

sensor network component in the tracking object application that is responsible first for

creating and maintaining the wireless ad-hoc mesh network and then for collecting and

returning to the base station the sensor’s values that is critical for the application. In the

following sections the MSP410 system is analyzed beginning with the proposed

Crossbow implementations and then providing hardware and software specifications.

Figure 40 provides a high-level view of the kit.

 56

Figure 40. High-level view of Mote Security System Deployment Overview (MSP 410)

b. Proposed Deployments
The MSP410 Mote Security System supports a variety of security

applications. Although the object tracking is not included in the MSP410 kit (Crossbow,

2005), it is designed to support security applications using motion detection such as

“remote border security, perimeter protection, intrusion detection and identification, and

building occupancy monitoring.”

In a typical security application, MSP410 Motes are deployed in a

perimeter or grid pattern. The MSP410 mote, by combining wireless mesh networking

technology and carrying a set of sensors, is able to generate detection by transmitting the

proper sensor’s data to the base station directly or through the network. Figure 41

presents a possible perimeter deployment around a building and exhibits the distances

between the motes which recommended by Crossbow. Figure 41 also demonstrates the

orientation restriction recommended by Crossbow, which the motes must have for better

results. In the MSP410 Sensing Subsystem section we will further analyze this constraint.

 57

Figure 41. MSP410 deployment for perimeter monitoring: MSP410 Series User’s Manual
(Crossbow 2005)

The proposed dense grid deployment is presented in the user’s manual and

Figure 42. It includes the recommended distances and the same orientation restriction

with the perimeter option. From the deployment description we assume that the purpose

of the above dense grid is to provide complete coverage of the area of interest. The

distances in both proposed deployments are restricted by the average sensor’s effective

distances and not by the communication ranges. If the application’s requirements do not

specify complete area coverage, then greater distances can be used between the motes.

Thus a greater area will be covered by the same number of motes, but possibly, some

shadow areas also will be produced.

 58

Figure 42. MSP410 deployment for a dense grid monitoring: MSP410 Series User’s Manual

(Crossbow 2005)

c. Systems Components
The MSP410 Mote Security System can be roughly divided into two parts.

One part comprises is a number of MSP410CA Motes, a two AA battery-powered

“integrated processor-radio-sensing device.” The mote is the system’s core, responsible

not only for the sensing functions but also for the deployment and maintenance of the

wireless mesh ad-hoc network. Moreover, the system contains an MBR410CA, the base

station, which acts as the important wireless sensor network interface with other systems.

It is responsible for delivering the collected data to the connected system; it is also used

to reprogram the motes, an important function for a developer or during the system’s

maintenance. The following sections analyze further the above system’s components,

based on the information included in the MSP410 Series User’s Manual and the

MPR/MIB User’s Manual (Crossbow, 2005).

d. MSP410CA (mote) MICA2 Platform Core (Microcontroller,
Radio)

The core element of the MSP410CA system, the mote, is a combination of

the MICA2 processor/radio board and a variety of sensors. Figure 43 exhibits the mote in

 59

the “heat reflective plastic enclosure” and the mote’s basic block diagram. This section

focuses on the platform, microcontroller, and radio.

(a) (b)

Figure 43. (a) Mote’s high level view and (b) Mote’s basic block diagram
MSP410_Datasheet (http://www.xbow.com)

We begin our description at the left part of the above block diagram, the

processor/radio part. The processor/radio part belongs in the MICA2 Crossbow products’

family. The MPR/MIB User’s Manual separates MICA2 into three models based on their

RF frequency band: the MPR400 (915 MHz), the MPR410(433 MHz) and the MPR420

(315 MHz). The MST410 system uses the second model, the MPR410. All the MICA2

models are compatible and can communicate with each other. Figure 44 demonstrates the

platform and the block diagram of the MICA2.

 60

http://www.xbow.com/

(a) (b)

Figure 44. (a) Photo of a MICA2 (MPR4x0) without antenna, (b) MICA2block diagram of a
MPR/MIB User’s Manual (Crossbow, 2005)

The basic platform element which has total control of the functions, is the

Amtel Atmega128 microcontroller. Although only two peripherals are directly connected

to the processor, the external flash and the 64-bit Serial ID number, all the sensors and

devices are handled as peripherals. The wired communication and reprogramming

functions are provided by the 51-pin Hirose interface connector. In addition the platform

provides status indicators by using three different LEDs: yellow, green , and red

(MSP410 Series User’s Manual [Crossbow, 2005]). However, it is quite difficult to

identify the mote’s status using the LEDs, because of the enclosure.

The Chipcon CC1000 radio is the other vital piece of the MICA2 Platform

Core. It manages transmission at an effective baud rate 19.2 kilobits per second (kbps) by

using two-tone Frequency Shift Keying (FSK) modulation and Manchester encoding

(MSP410 Series User’s Manual [Crossbow, 2005]). Within the specified band, around

433MHz, the radio can be tuned up to four different channels. The actual number of

possible channels is higher, but the recommended channel spacing in order to avoid

interference is greater than 500 kHz. Furthermore, the transmission power can be

adjusted by reprogramming the proper register in the radio that controls the RF power

 61

 62

(MPR/MIB User’s Manual [Crossbow, 2005]). The default working frequency for the

MSP410 system is 433MHz, and we assume that the default power level is the maximum.

The operating system that the MICA2 board runs is TinyOS 1.1.7 and

higher. Additionally, the software suit includes Crossbow’s XMesh networking Stack

(MSP410 Datasheet [http://www.xbow.com]). The platform combines four different

elements to promise reliable security application’s deployment with area coverage,

depending on the application, from 1,000 sq. ft. to 30,000 sq. ft. per mote. The first is

platform’s mesh networking capabilities. Then the effective system’s deployment radio

ranges, Crossbow in the MSP410 Series User’s Manual claims “at least 250ft on flat

concrete ground and 150ft when placed on grassy terrain with rolling hills”. The last one

is the sensor’s capabilities, that are described in the next paragraph.

e. MSP410CA (mote) Sensing Subsystem, Passive Infrared (PIR)
Sensor

Under the plastic enclosure of the MST410CA mote, except the core’s

board microcontroller and the radio components, is a set of sensors. These sensors are the

system’s important interfaces, with an environment responsible for gathering data. The

collected information is passed to the board part where a basic manipulation takes place.

Then the information is encapsulated in a message, which is transmitted through the

network forward to the base station.

The MSP410 Series User’s Manual (Crossbow, 2005) contains details

related to the mote’s sensing capabilities. Each MSP410 node contains a microphone that

currently is not used and a set of magnetic field and passive infrared (PIR) sensors. The

PIR sensor provides 360-degree coverage in a horizontal direction; to do so it uses four

PIR sensing elements arranged orthogonally. Each element is considered a “dual element

sensor” designed to detect the thermal that a body or object radiates. A lens enhances the

sensor’s capabilities; it generates a vertical field of view of ± 15° and ± 45° in the

horizontal plane. The horizontal field of view is further subdivided into nine individual

beans. Object detection is taking place whenever a “shadow” produced by a warm object

close to a sensing element crosses sequentially at least two of the horizontal beans. The

four PIR elements also provide “Quad Detect capability”. This capability enhances the

 63

system’s ability to identify an object’s movement and direction by including into the data

message, which the node sends to the base station, not only the pir value but also the

quad that had the detection.

The outputs of a PIR sensor are affected by the sensor’s sensitivity, the

sensor’s position, the ambient thermal noise and the object’s characteristics (type, size,

distance, velocity, direction, aspect). To increase the sensing performance and to reduce

the effect of the noise, sensors use filtering for the input output signal. Additionally, they

eliminate the monitoring bandwidth by using “active filtering” in the area where they

have the greatest sensitivity from 0.01 Hz to 15 Hz. Table 2 summarizes the specification

and performance of the MSP410 PIR sensor based on the MSP410 Series User’s Manual

(Crossbow, 2005).

Specifications - Performance Value Comments

Optical wavelength 5 µm to 14 µm

Optical bandwidth 0.01 Hz to 15 Hz

Field of view vertical ± 15° °

Field of view horizontal ± 45

Storage temperature -55°C to +125°C

Range for human detection 30’ to 40’

Range for cars detection 50’ to 60’

Range for large tracks detection 70’ to 80’

For Motes height ≈ 3’ off the
ground
Outdoor air temperature ≈
7°C.

Table 2. MSP410CA Mote PIR Sensor’s specification and Performance based on the
MSP410 Series User’s Manual (Crossbow, 2005).

f. MSP410CA (mote) Sensing Subsystem, Magnetic Sensor
The magnetic sensor is a very sensitive two-axis magnetic-field disorder

detector. It is triggered by changes in the local magnetic field, which may be produced by

a near-passing object. The use of proper noise-filtering algorithms and a two-stage

amplification minimizes false detections and succeeds in maximum detection ranges. The

 64

following table provided by Crossbow in its MSP410 Series User’s Manual (Crossbow,

2005) summarizes the magnetic sensor’s specifications.

Parameter Typical value

Bridge resistance 1100 ohms
Field range ± 6 gauss (Earth’s field = 0.5 gauss)
Sensitivity 1 mV/V/gauss

± 1 gauss 0.05% FS

± 3 gauss 0.4% FS

Linearity error
(best fit straight line)

± 6 gauss 1.6% FS
Bandwidth DC to 5 MHz
Noise Density 50 nVsqrt Hz @ 1kHz
Resolution 120 µgauss @ 50 Hz BW
Storage Temperature -55°C to 175°C

Table 3. MSP410CA Mote Magnetic Sensor’s specification: MSP410 Series User’s
Manual (Crossbow, 2005)

g. MSP410CA (mote) Power Characteristics
As part of the MICA2 family, the MSP410CA mote is designed to operate

by using two-AA-battery power. This section focuses on some of the power

characteristics of the motes. The practical operating voltage is 3.6 to 2.7 V; thus,

theoretically, any battery combination that provides the above voltage can be used.

Additionally, the MICA2 board can be powered through the 51-pin connector and the

two-pin Molex connector. However, in the MSP410CA product, the last three abilities

are not applicable because of the enclosure. The following table summarizes the power

requirements for various operations. Finally, according to the system’s manual, the two

AA batteries last ten hour.

 65

Circuit Mode

Circuit Mode Current

PIR Off 1 µA
PIR On 300 µA
Magnetometer, per axis Off 1 µA
Magnetometer, per axis On 3 mA
Radio Off 1 µA
Radio RX mode 8 mA
Radio at 1 mW TX mode 16 mA
Processor Sleep 15 to 20 µA
Processor Active 8 mA
Serial flash memory Write 15 mA
Serial flash memory Read 4 mA
Serial flash memory Off 2 µA

Table 4. Motes’ power requirements for various operations based on the MSP410 Series

and MPR/MIB User’s Manual (Crossbow, 2005)

h. MBR410CA Mote Base Station
The MBR410CA Base Station (Figure 45) consists of two different pieces

that have already been described in the above sections. A MIB510 serial gateway and a

MICA2 series MPR410 radio/processor board are connected together.

The base station primarily supports two different operations. First, by

having the node ID 0 acts as a base station for the wireless sensor network, this

configuration allows data aggregation from the nodes on a computer platform connected

to the MBR410. In addition, the developer has the ability to reprogram the motes by

using the RS-232 serial programming interface, as we have already mentioned.

Figure 45. MBR410CA, MSP410 base station

C. TSSRV3

1. Overview
The main objective of this thesis develop the object detection and motion

estimation application using the above described Crossbow product to gather data from

the environment where it is deployed. The Object Tracking application algorithmically

processes the returned data from the Crossbow wireless sensor network system and

produces outputs about the object’s movement. The outputs can be further used by any

other system able to handle them.

The related system that is used during this project for testing and demonstration

purposes is the Tactical Remote Sensor System version 3 (TSSRv3), which is briefly

described in the following section. The TSSRv3 is part of the thesis research by Brian

Dixon and William Felts (TNT report, 2005). It is a wireless sensor network system

developed to provide data gathering, images, from the environment where it is located.

Then it employs effective resource aggregation to maximize the usage of network devices

and resources. By providing a capability for load sharing between the system’s nodes, it

further improves the resources handling. In addition, the TSSR’s nodes can discover and

evaluate different communication options from a predefined pool of options, trying to

increase the data transmission performance. Finally, the high-quality images that the

system is able to capture through satellite communication are accessible from any

computer connected to the Internet. The software package is written in C Sharp (C#) and

runs on top of the following hardware.

66

2. Hardware
The TRSSv3 system currently includes three sets of a 4XEM Elite miniPC,

Globalstar Phone, and Creative WebCam. In addition, the system includes one File

Transfer Protocol (FTP) Server. The following figure provides a high-level overview of a

TRSSv3 set, including the FTP server.

(a) 4XEM Elite2 miniPC (b) Creative WebCam

(c) FTP Server (d) Globalstar Satellite Phone

Figure 46. TSSRv3 Hardware Components (a) 4XEM Elite2 miniPC, (b) Creative WebCam,
(c) FTP Server, (d) Globalstar Satellite Phone (TNT report, 2005)

As a wireless sensor network system, theTRSSv3 compromises mobility, size,

and power management issues. The miniPC choice, as the node main part, provides

enough processing power and storage capacity for the image gathering and processing

task. Additionally, the mobility requirement is supported first by making the miniPC

battery powered and then through the networking flexibility and satellite communications

capabilities of the system. The satellite modem and the Globalstar satellite phone serve

the purpose to transmit color images from the remotely located sensor devices to the FTP

server. The commercial 1.3 megapixel WebCam compromises the important image

quality and keeps the image file-size small enough. Finally, to keep the system’s cost

67

68

low, all the hardware components are commercial. The following section presents the

system’s architecture and provides an overview of the system’s software part.

3. System Architecture
The TRSSv3 system’s design as a wireless sensor network can be divided into

two parts, the node-sensor and the network. The TSSR3 node is the set of a miniPC,

equipped with a WebCam and a satellite phone. The hardware overview paragraph

presented the node’s components. The TSSR3 node software functionality is described in

the following sec. tion

The network’s characteristics and topology comprise the second important part of

the TSSRv3 system. The system provides satellite communication with the FTP server

for data transfer and uses 802.11b wireless technology for the local ad-hoc network. The

purpose of the local wireless network is to implement load sharing among the system’s

nodes. The network topology used for the ad-hoc network is “star.” The star topology

decision was based on simplicity and reduced-overhead factors. The single point of

control that star provides serves the simplicity factor, but it also has the drawback of the

single point of failure. The system’s nodes behave only as either server or client, not

both; in particular, the center node is the client and the connected nodes are the servers.

Every TSSRv3 node can transmit images through the Globalstar satellite phone

when the images arrive at the Globalstar ground station. Then, through standard Internet

routing, they are forwarded to the FTP server. The following figures present an overview

of the TSSRv3 network topology.

Figure 47. TSSRv3 ad-hoc network and uplink connectivity (TNT report, 2005)

Figure 48. TSSRv3 downlink(TNT report, 2005)

4. Software Components
To utilize the hardware and network components, the TSSRv3 uses software

functionality written in C Sharp (C#). The software part of the system serves the different

69

system’s requirements. it is divided, based on them, into six different modules: the

Capability, Acquire, Loadshare, Master, Loadshare Slave, and Upload.

The system’s information flow begins with the Acquire Module, which controls

the Creative WebCam and capture the digital image. Then the Capabilities Module,

responsible for discovering the device’s capabilities, senses the new image and writes it

in the proper text file on the device. Next, the Loadshare Master in the central node,

which controls all the other nodes, receives the new capabilities text file. By using the

loadshare algorithm, it determines if the node will transmit the image or whether another

node will take the transmission responsibility. The algorithm tries to keep the network’s

balance. Finally, the Upload Module takes control and transmits the image to the FTP

server. The following figure completes the above software’s functionality overview.

Figure 49. TSSRv3 Software Modules and Information Flow (TNT report, 2005)

70

71

IV. OBJECT-TRACKING APPLICATION: ARCHITECTURE AND
IMPLEMENTATION

This chapter presents the object-tracking application, the main objective of the

thesis. The application is an algorithmic-software implementation written in Java, which

is capable of receiving Active Messages (AM) and generating object detection alerts and

motion estimation data. The implementation of the object-tracking application makes use

of the Crossbow sensor motes and uses the background knowledge introduced in the two

preceding chapters. The motivation for the object-tracking application is to demonstrate a

complete and useful application sited in the systems control station that uses a general

purpose, commercial-of-the-shelf (COTS) sensor network system. The application acts as

an interface which collects the raw data (WSN’s messages) that the motes generate

(numerical values). It makes the proper comparisons and algorithmic processes to

identify and track the object while it is moving inside the area covered by the wireless

sensor network. Finally, with the detection and tracking data, it alerts the user or another

system. The following sections provide an overview of the object-tracking application.

A. APPLICATION REQUIREMENTS AND DESIGN CONSIDERATIONS
There are a number of critical factors that influence the design and the

implementation decisions for the object-tracking application. The most important design

consideration is the purpose and the deployment environment of the application. Based

on the sensors’ characteristics, the application aims to support detection and tracking of

different kinds of objects in different deployment environments. The application supports

the detection and tracking of humans and vehicles. These kinds of objects can be detected

and tracked when they are moving in a corridor or on a road. Thus, the system supports

indoor and outdoor deployments.

Another important consideration is the wireless sensor network system that the

object-tracking application uses. The Crossbow MSP410 Mote Security System,

discussed in the previous chapter, is the sensor network system that serves the data

collection for the application. The MSP410 system is the application’s interface with the

environment; its characteristics are the tools feeding the application with the sensor’s

returns, but they also impose limitations. The MSP410 provides detections based on the

72

returns from the passive infra red (PIR) and magnetic sensors. Additionally, it supports

ad-hoc mesh networking and data forwarding to the system’s gateway, which is directly

connected to the application workstation. Moreover, the motes are battery-powered; the

gateway is not. These are some of the important characteristics of the MSP410 that they

have been discussed in the chapter 2.

The application must maintain a balance between the cost of deployment and

reliability. To achieve this, the implementation tries to minimize the number of required

WSN motes and at the same time, it tries to provide the highest system reliability. This

could be done by the optimum usage of the MSP 410 characteristics. Proper topology

selection and the appropriate communication and sensing deployment ranges are some of

the design decisions that must be considered.

A key design decision related to the application development is that all the

algorithmic manipulation and decision-making work is performed in the system’s base

station by the object-tracking application. The MSP410 does not do any kind of data

processing, selection, or filtering; it just collects and forwards all the data. This factor

was derived from the following considerations. First, this approach is the most

straightforward and simple: it keeps the system simple, and makes the necessary

computations at the ends. In addition, the expected number of WSN nodes that the system

expects to use is small. Thus the overhead that is produced by the data forwarding to the

base station, without any in-system filtering or manipulation, is estimated to be low.

Finally, the MSP410 system does not support the reprogramming of the nodes’ software

package.

An additional function of the object-tracking application is to provide interfaces

to the user and other systems. The graphical user interface should be simple, providing

the user with the ability to properly configure the system and also inform him/her of the

application output. In addition, the interface to other systems should be kept as simple as

possible.

Finally, the application design involves considerations about the logic of the

object-tracking algorithm. The focus is to keep the logic, the algorithm, and the software

implementation simple. During the sequential development of the application, the

73

designer can adjust the algorithmic implementation to meet new requirements and

overcome possible difficulties. Moreover, the design’s simplicity helps in the

apprehension of the algorithm and software implementation. The following sections

further analyze the application requirements.

B. APPLICATION SCENARIOS
There are several deployment scenarios that the developer can choose from. The

choices depend on the different systems’ parameters and configurations. The area of

interest that the application has to cover, the kind of object that the application has to

detect and track, the nodes’ sensing and communication characteristics, the available

number of nodes, and the WSN architecture are some of the factors that affect the

deployment scenario selection. Most of those factors have been analyzed in the preceding

chapters.

For the object-tacking application, the designer’s choice of deployment scenarios

is based on the following. The scenarios have to cover both indoor and outdoor

deployments. The area of interest is specific and narrow. The application aims to detect

and track objects that are moving along a road or a corridor. Scenario selection is also

affected by the nodes’ characteristics. The MSP 410 nodes are able to identify and detect

objects based on their PIR and magnetic returns. Thus, the sensing ability of the nodes

specifies the kind of objects, humans and vehicles that can be detected and tracked.

Moreover, the available number of MSP 410 nodes that the object-tracking application

has available is specific, with a maximum of eight. The WSN architecture is another

factor that affects the scenario selection. The MSP 410 WSN kit is able to support only

flat network architecture. Taking also into account the available number of nodes for

deployment, the flat network architecture is adequate. Finally, the deployment scenarios

have to be simple and, at the same time, general. The scenario’s simplicity is important

for its easier understanding and use by the application’s user. It must also be general, in

order to cover most of the deployment environment (road and corridor design and

conditions).

Predetermined deployment (chapter 2) is the strategy used for the object-tracking

application. As the deployment environment is known and the number of nodes small,

this kind of strategy provides the ability to control the area of coverage and maintain the

high QoS. There are three predetermined deployment scenarios: the straight-road

scenario, the T junction, and the crossroads scenario. Although only three, they are

suitable for most of the possible deployments.

1. Straight Road Scenario
The straight-road scenario (Figure 50) is the simplest. It covers all the road and

corridor designs with and without curves and dips. The assumption is that, during the

deployment, the nodes maintain their RF connectivity. One constraint in this scenario is

that for a given part of the road or corridor that the system monitors, the road or corridor

must not have any exits. Any object that enters the system from one side has to exit from

the other side.

Outbound

Inbound

Figure 50. Straight-Road Scenario and its main directions.

2. T-Road Scenario
The T-road scenario (Figure 51) is an extension of the straight-road scenario. It is

a combination of two straight roads or corridors, in which one road or corridor ends in

another. Any object at the end of the first road must turn left or right. This scenario is

more complicated than the straight-road scenario, in that it must produce the direction

outputs. In addition to the “inbound” and “outbound” directions that the straight-road

scenario supports, the T-road scenario supports a “left to right” and “right to left”

direction and the combination of those four directions.

74

InboundOutbound

Left to Right Right to Left

Figure 51. T-Road Scenario and its main directions

3. Crossroads Scenario
The third and last scenario is the crossroads scenario. It is based on the above two

and is the most complicated in its implementation. This scenario supports four main

directions and their combination. The main directions are: inbound, outbound, left to

right, right to left, and north to south, south to north. Figure 52 presents the crossroad

scenario and the main directions it supports.

InboundOutbound

Left to Right Right to Left

North to South South to North

Figure 52. Crossroads Scenario and its main directions

75

76

C. FINDING SENSOR’S TOPOLOGY
There are several ways that the nodes of a WSN can be deployed. As was

mentioned in the preceding section and in chapter 2, the most important factors that

determine the nodes topology are: the node characteristics, the network architecture, the

deployment environment, and the application requirements. Other important factors are

the reliability and redundancy that the application has to support. For the object-tracking

application, based on the application requirements and after the first experimental results,

we choose a high-level of reliability and redundancy.

The proposed Crossbow deployment techniques (as described in chapter 2) are

very general and are not adequate for the current application. However, the scenario

selection discussed above bound the node deployment topology. Thus, given the

deployment scenarios and the nodes’ characteristics the nodes have to be deployed along

the road or corridor. The distance between the nodes is determined by the communication

and sensing ranges, the reliability and redundancy level, and the application latency.

In light of the MSP 410 experimental results we determined that the maximum

deployment distance between the nodes for the object-tracking application is from 45 to

65 meters. The sensing range and the horizontal field of view for each node determine the

nodes’ deployment. The horizontal field of view for each of the four PIR sensors of a

MSP 410 node is 45 degrees; the two magnetic sensors provide 360 degree horizontal

coverage. The sensing range, especially for the PIR sensor, is also affected by

environmental conditions, especially temperature. The MSP 410 experimental results

indicate that the sensing range for both PIR and magnetic sensors is at least five meters

from the node. For simplicity and accuracy purposes, we do not want any overlapping of

the nodes’ sensing areas. To summarize, the nodes must maintain proper distances

between them in order to communicate, but the distances have to be enough to avoid the

confusion produced by duplicate detections.

The connectivity redundancy level that we chose for the object-tracking

application is two. That means that each node is able to communicate with two neighbor

nodes on each side. The level-two redundancy enables the application to continue

working even if it loses a number of nodes. The final issue that determines the node

77

topology is the space that the application has available for deployment, the width and

length of the road or corridor. The following sections analyze the system topology for

each scenario. For the deployment we assume that we have eight nodes and one base

station available.

The final factor that affects the nodes topology is the system delay. The total

delay is the sum of three different delays. The first system delay is the time that the node

needs to detect the object and produce the detection signal. The second delay is caused by

for the transmission of the message from the source to the gateway and base station. The

final delay is produced in the base station by the algorithmic manipulation of the data and

the input-output procedure. Although we do not have experimental results for total-

system delays, we assume that they exist and we use “sufficient” distance between the

nodes.

1. Straight-Road Node Topology

For the straight-road scenario, the nodes are deployed along the road. They can all

be positioned on the same side or both sides of the road/corridor. Although we normally

deploy the nodes by using both sides of the road, the deployment pattern mainly depends

on the width and construction of the road. For a narrow road we can chose to deploy the

system on only one side of the road. For a wide road the two-side deployment is

preferred. Figure 53 illustrates a deployment where nodes are placed on both sides of the

road. The normal distance between the nodes that we used is 20 meters, but it can be

adjusted based on each deployment’s specific needs. Ideally, the sensing areas of two

neighbor nodes are tangential. The width of the road and the size of the sensing area also

affect the accuracy of the detection, especially the PIR detection. In a wide road where

the object passes away from the nodes, the detection is less accurate than in a narrow

road. This happens because of the way the PIR sensor detects movement (chapter 3).

Finally for the straight-road deployment, we used only one of the MSP 410 node’s four

PIR sensors (quad 1).

Magnetic
Sensing Area

PIR Sensing area
One Quarter

Distance
between nodes

Figure 53. Node topology in the straight-road scenario and the magnetic and PIR sensing
area

2. T-Road and Crossroads Node Topology
The T-Road and crossroads scenarios have the same principles and considerations

as in the straight-road scenario. The main difference is that, for the nodes positioned is at

the corners of the roads, we use two quarters (two PIR sensors) for the PIR detection,

instead of one. By taking advantage of the nodes’ characteristics, we eliminate a number

of important nodes for deployment. Figure 54 presents the T-road scenario while figure

55 shows the crossroad scenario.

78

PIR Sensing area
Two Quarters

Figure 54. Nodes topology in the T-road scenario and the PIR sensing area.

Figure 55. Nodes topology in the crossroads scenario and the PIR sensing area.

79

80

D. PROGRAMMING LANGUAGE
We chose Java as our main programming language. There were a number of

factors that influenced our language selection. One critical consideration is that Java is a

widespread language with a great variety of libraries and available code. Java’s

networking libraries are especially helpful. In addition, the application’s implementation

in Java supports its interconnectivity with other possible Java projects.

Another important factor that influenced our language selection is the object-

tracking algorithm itself, which will be analyzed later. The object-tracking algorithm is a

simple long series of selections that checks and moves detection objects.

E. OBTAINING DATA FROM THE SENSOR NETWORK
The next important step in the development of the object-tracking application is to

obtain the data that the MSP 410 wireless sensor network system captures and forwards

to the base station. The route that the data follows is from the MSP 410 node directly, or

through neighbor nodes, to the MBR410CA, the WSN’s gateway. From there, the data is

forwarded through a serial port to the computer that runs the object-tracking application.

When the data arrives at the serial port, the application must capture it.

The MSP 410 uses the TinyOS Active Messages (chapter 2) format to transmit

the data. The wireless sensor network captures the information and encapsulates the data

inside the AM, which then it is forwarded toward the system’s gateway. To forward the

data to the application’s base station, the gateway forwards the AM using the RS 232

protocol. The application listens to the serial port, it captures and reconstructs the AM,

and by removing the headers, it obtains the actual information. As shown in Figure 56,

the default length of the AM is 36 bytes, as described in the University of California

AM.h v 1.4 header file of the (2000-2003). Since the AM length is not restricted, for the

MSP 410 system Crossbow uses a length of 38 bytes.

2 Bytes 1 Byte 1 Byte 1 Byte 29 Bytes 2 Bytes

Address Type Group Length Data CRC

Figure 56. AM message format, University of California (2000-2003)

81

The object-tracking application’s Java component-class responsible for obtaining

the data is the SimpleRead class (it is further analyzed in the software component section

??). This class is responsible for receiving the AM from the serial port and extracting the

useful data. Then it forwards the data to the rest of the application components.

The data field format in the AM is not specific; it is up to the developer to use all

the available size or only a part of it. The developer can place the data in any order he/she

wants in the data field. During the SimpleRead development, we had great difficulty in

determining the useful data bytes inside the AM data field. Although we had available a

similar source file from the Crossbow (Crossbow msp410.c,v 1.4, 2004; Crossbow

xlisten.c, v 1.17, 2004; Crossbow xsensors.h, v 1.35, 2004) and oral instructions, we did

not have available the actual Crossbow data field format. Therefore, we spent a great

amount of time identifying it. The final message format that we concluded with, which

contains the important information for the object-tracking application is presented in

figure 57.

10 B 1 B 7 B 1 B 2 B 1 B 1 B 2 B 2 B 2 B 9 B

Headers &
networking
data

nodeid Unidentified
bytes &
multihop
header

parentid Seq# vref quad pir mag audio Unidentified
bytes &
trailers.

Figure 57. Data-field message format for the MSP 410 system.

The object-tracking application uses most of the information that is included in

AM. The nodeid identifies the MSP 410 node that sends the message; the seq# is a

unique sequence-number value for each message per node. The vref value identifies the

voltage value related to the node that sends the message. The quad and pir values are

related to the passive infrared sensor. The mag value is returned when a node has a

magnetic detection. The audio field is currently unavailable in the MSP 410 system. In

accordance with the msp410.c, v 1.4 (Crossbow, 2004), after the audio value they follow

the pirThreshold, magThreshold, and audioThreshold reference values. The object-

tracking application uses the nodeid to identify the node that sends the message, the seq#

to separate each message, and as utility values, the quad, pir, and mag values to identify

82

the detections and, based on them, to produce outputs related to the object’s direction and

speed. Finally, the vref and the parentid are only displayed by the application as an

indication of the node’s battery and the network condition. Whenever the SimpleRead

component receives a message, it forwards it to the other application’s components. If the

object-tracking application then detects an object, it encapsulates the data into a “target”

object and implements the analysis that is described in the next section. More information

about the MSP 410 system is included in chapter 3.

F. ANALYSIS OF RAW DATA
The algorithmic analysis of the data is the core of the object-tracking application.

The logic that the algorithm follows is simple. Whenever a node detects an object, it

checks whether it has any information about the object. Then it creates or updates the

tracking characteristics of the object and informs the neighbor nodes about the object

currently in the system. The application also informs the user and any other applications

active at the time. The algorithm can be divided into two parts and follows several steps,

as described below.

The first part is responsible for object detection. The application receives

messages from the MSP 410 WSN system and for each message it determines whether it

is related to object detection or whether it is a message that facilitates networking such as

routing table updates. The following sections describe the algorithmic steps of the first

part.

1. Step 1: Object Detection

To identify an object detection message, the application performs a series of

comparisons. It compares the received PIR and mag value with their corresponding

thresholds. The thresholds reflect the current deployment configuration. Whenever a

received PIR or magnetic value is above the threshold value, the application assumes that

object detection has occurred. The quad value is also related to the PIR returns. Its value

represents the MSP 410 node’s quarter that has detected a change at the PIR value;

otherwise its value is zero. Because the application works with specific scenarios, and the

nodes have specific predetermined topology for each scenario, the application uses the

quad value as an additional selection criterion to determine when PIR detection happens.

83

2. Step 2: Characterization of the Detected Object
The second step is responsible identifying the kind of object that it detects. It does

that by evaluating the source that produced the detection. If the object detection is based

only on the PIR value, the application concludes that the object is not a vehicle, and it is

probably a human. If the object detection is based also or only on the magnetic returns

then the object probably is a vehicle.

3. Step 3: Storing Object Data
Subsequently the algorithm must store the data. Every time the object-tracking

application identifies a detection, it creates a “target” object that holds all the related with

the detection data. In addition to the variables that hold the detection data, the target

object uses others to hold information related to the motion of the object (e.g.,

identification, direction, speed). The second part of the algorithm is responsible for

producing this information. The object-tracking application initially creates “application

node” objects, which correspond to the physical nodes of the MSP 410 WSN and are

used to hold data related to them. In addition, the application uses a first-in first-out

(FIFO) data structure for each of the application nodes (the number of application nodes

is the same with the number of MSP 410 physical nodes). The FIFO data structures are

used to store the target objects that concern each application node.

4. Step 4: Updating the Thresholds
The final step of the first part is responsible to keep update the application’s

thresholds. The PIR and mag thresholds are constantly updated based on the messages

received. Whenever an AM from the WSN is not characterized as an detection message it

is used from this part of the algorithm. Although the primary reason for those messages is

networking, they return values for all the message fields (e.g. PIR, mag, nodeid). These

PIR and mag returns, demonstrate the environmental conditions in the deployment

environment. The application’s methods responsible for the thresholds updates, capture

these PIR and mag values and updates the thresholds.

The second part of the object-tracking application is responsible to produce the

outputs. It receives the target objects from part. It has also available the information

stored in the “application node” objects and in the nodes’ FIFO data structures. Based on

the above information the algorithmic manipulation continues with the following steps

84

5. Step 5: Checking the node FIFO
Every new target object that is passed from the first part to the second, by default,

in the direction and speed variables, contains the “unknown” and “zero” values

respectively. Every time that an application node produces a target object (the

corresponding MSP 410 node returns an object detection), it checks the corresponding

FIFO. If the FIFO is empty, the application node does not change the values of the

direction and speed variables (they remain “unknown” and “zero”).

If the FIFO is not empty it can contain two different kinds of target objects: those

that have “unknown” and “zero” in the direction and speed variables, and those that have

a specific direction (based on the scenario), and speed values produced earlier by a

neighboring application node. In the case that FIFO contains target objects the algorithm

continues by producing motion outputs.

6. Step 6: Producing the Direction Output
This step is responsible to produce the direction outputs. As it is mentioned above

if the FIFO is empty the algorithm is not able to calculate the direction of the object and

keeps the default value (unknown) that the target object initially contains. In the case that

the FIFO is not empty and the stored direction and speed data, in the first stored target

object in the FIFO, are the default, the application node checks the ID of the application

node that stored the data in its FIFO. Then based on the nodes’ deployment topology and

the stored and current node, it calculates the direction. Finally, the produced direction

value is stored in the current target object.

Assuming that the first target object in the FIFO contains direction and speed

which are different from the unknown and zero, the application node performs the same

step described above and updates the direction variable in the current target object.

7. Step 7: Producing the Speed Outputs
If the FIFO is empty in this step the algorithm also does not change the default

speed value of the current object. Otherwise, by checking the time difference between the

time that the stored detection happens and the current time and using the range between

the nodes, it produces the speed for the tracking object. The object’s speed is also stored

in the current target object. In addition, this step is responsible to keep the object’s speed

history. For that purpose an additional data structure is used as a variable of the target

object. Thus, for a new detection the speed history data structure is initialized and is

updated with the produced speed values as the object is moving through the system. The

speed history data structure contains information about the node id that had the detection

and the corresponding object’s speed.

8. Step 8: Informing the Neighboring Nodes
After the completion of the above steps the algorithm “informs” the neighbor

nodes about the detected object. The application “informs” the neighboring nodes by

storing the updated target object in their FIFO. The algorithm selects, based on the

object’s direction and the deployment scenario, which nodes must inform. If the direction

is unknown informs all the neighboring nodes. In the T-road and crossroads scenarios,

the “corner” nodes also inform themselves. That happens because the corner nodes use

two PIR sensors instead of one as is the case with the other nodes. Finally, if the direction

is specific, the algorithm informs only the nodes in the given direction (Figure 58 &

Figure 59).

(a) Target Object with unknown direction (b) Target Object with known

direction (outbound)

Figure 58. Neighbor Nodes’ updates for a target object with and without knowing the
object’s direction for the straight road scenario

85

(a) Target Object with Unknown direction (b) Target Object with known

direction (left to right)

Figure 59. Neighbor Nodes’ updates for a target object with and without knowing the

object’s direction for the crossroads scenario’s corner nodes

In the first approach of the object-tracking algorithm that we implemented, every

time the application node had an object detection, it informed only the immediate next

neighboring nodes (Figure 58 & Figure 59). In the new version, instead of only the

immediate neighbor, the application node informs two nodes in the direction of approach

of the object, as Figure 60 and Figure 61 illustrate. This change increases the system

redundancy and the programming complexity but at the same time it improves the system

reliability as now the application is able to produce tracking outputs even if a node loses a

detection or a node is out of order.

86

(a) Target Object with Unknown direction (b) Target Object with known

direction (outbound)

Figure 60. Neighboring Nodes’ updates for a target object with and without knowing the
object’s direction for the straight road scenario in the algorithm’s second version

(a) Target Object with Unknown direction (b) Target Object with known

direction (left to right)

87

Figure 61. Neighboring Nodes’ update for a target object with and without knowing the
object’s direction for the crossroads scenario’s corner nodes in the algorithm’s

second version

88

9. Step 9: Removing the Old Data
The final step that the algorithm performs is to remove the old data that FIFOs

contains. Whenever the application node checks its FIFO, finds that the queue is not

empty, and compares the stored data with the current target object, when the comparison

is finished, it removes the old target object from all the application’s FIFOs that have it.

This happens because the stored information has been used and is no longer required ;

thus, it has to be removed to make space for the next detection and to avoid confusion.

G. PROGRAMMING ISSUES AND ASSUMPTIONS
Although the scenario and the algorithm that the above sections describe are quite

simple, their programming implementation is quite complex. Given the MSP410

characteristics and the design choices mentioned above, the programming

implementation uses the following three assumptions to accurately produce the required

data outputs. The object-tracking application results are based on the information that the

MSP 410 wireless sensor network provides. Thus, the results’ accuracy and the detection

probability of the object-tracking application are based on the WSN. Second, the

application assumes that inside the system there is only one object. The concept of a

wireless sensor networks is not the best proposal for a heavily trafficked road. The third

assumption is that the WSN is specific. The number of the available MSP 410 nodes is

eight.

Taking into consideration that the object-tracking application is used by a battery-

powered system, we tried to minimize the run-time overhead.. First, we implemented the

application as an event-driven program. Whenever the WSN returns a message through

the serial port, it captures it and triggers and forwards the useful information to the rest of

the application.

In addition, we tried to keep the memory and CPU requirements as low as

possible. The program uses objects for the application nodes, which are used to hold only

the important data related to the physical characteristics of the nodes and their position.

The number of the application node’s objects is related to the number of the physical

nodes avoiding the unnecessary memory usage. The Java code also uses “target” objects

to hold and transfer the information related to the detection events among the program’s

89

components. After the application uses a target object, it removes it and frees memory

space.

Another programming issue was the simplicity of the algorithm’s implementation

in Java. We tried to implement the algorithm, in with a straightforward way and, at the

same time, keep the code in a reasonable size. Like a lot of the algorithmic

implementation, the object-tracking application contains sequences of selection

statements. Those selections check the incoming data with the related thresholds and the

older data, in order to produce outputs about the object’s movement. In the Java code we

tried to keep the code length to a reasonable size to avoid redundant statements without

sacrificing the code’s simplicity.

The final issues were about the application interconnectivity and the user

interface. The implementation effort for object-tracking application as a new wireless

sensor application is in the algorithmic process of the sensor network’s data. Thus, the

interconnectivity and user-interface features are at a primitive stage. Currently, the

application only feeds the user with outputs only by displaying the object’s direction,

speed, and speed history and the TSSRv3 system, which triggers in order to take and

transit pictures whenever the object is in a proper place. The interconnection of the

object-tracking application and the TSSrv3 system is implemented by using a simple

input/output trigger (the object-tracking application renames a txt file into the

C:/loadshare directory; the TSSRv3 senses the change, takes the picture, and renames

again the text file). Finally, the current version of the application supports the user with a

simple configuration, control, and display interface. The following section provides an

overview of the tracking object Java components that implement the aforementioned

scenarios, algorithm, and programming issues. (The actual code is included in the

Appendix A.)

H. SOFTWARE COMPONENTS
The software used to implement the object-tracking application and satisfy the

application’s requirements is a Java package of three main components. The eight

different Java classes that the package uses can also describe the software

implementation. All these modules serve different functions, but they work together to

achieve the application requirements set for the object-tracking application. The three

components as shown in Figure 62 are: the user interface, the data acquisition, and the

algorithmic process. The component separation is used mostly for documentation

purposes, because the boundaries between the components are very loose.

User Interface Component
motionDetectionSystem Class

Data Acquisition Component
SimpleRead class

Node class

Algorithm Component
motionDetector class

straightRoadScenario class

TRoadScenario class

crossroadsScenario class

waitTime class

Object-tracking application

Figure 62. Object-tracking application components

In addition to the three main components, Figure 62 presents the Java classes that

construct each component. The application classes are: SerialReader, node, waitTime,

motionDetector, straightRoadScenario, TRoadScenario, crossroadsScenario, and the

objectTrackingApplication. Figure 63 and Figure 64 illustrate the UML diagram for the

object-tracking application. Figure 63 also includes the inner and nonpublic classes not

mentioned above. Given the component separation, the following sections present the

purpose and the general functionality that the above classes serve.

90

Figure 63. Object-tracking application: Complete UML diagram

Figure 64. Object-tracking application: Simple UML diagram

1. User Interface Component
The user interface component is important for the object-tracking application as it

supports of a variety of functions. This component has three different purposes: it helps

91

the application’s deployment configuration, it provides operational control, and it is used

to display the application’s outputs. Figure 66 provides an overview of the object-

tracking application GUI window.

Figure 65. Object-tracking application’s user interface overview

When the object-tracking application starts, the right window displays the initial

instructions for the user. The configuration starts when the user selects the desired

deployment scenario from the three choices under the “scenario” menu button. The

provided choices correspond to the three deployment scenarios: straight, T, and

crossroads. The next step is the nodes configuration. The application supports two

different node topological-configuration choices, the “default” and the “insert”. If the

user decides to configure the deployment it chooses the “insert” menu choice.

Instructions about the custom node configuration are provided after the scenario

selection, when a text document and a figure appear, in the upper-left and bottom-right

corners of the applications window respectively, appear providing instruction about the

92

93

nodes’ configuration. They provide the text format that the user must use to insert the

nodes’ physical characteristics (nodes’ id and distances between the neighbor nodes), and

the exact order to follow to insert the data. The default configuration is recommended

only for demonstration purposes. It uses the figure’s node configuration and constant

distances between the nodes.

The GUI window also contains a set of control buttons. When the configuration

step is finished, the user is able to start the data acquisition and the algorithmic

components by pressing the “start” button. Later the user can also use the “pause,”

“resume,” and “exit” buttons as desired to control the application.

Finally, the user interface component is used to display the application output.

The left window is used to display the commands that the application sends to the TRSS

system. The right window is used to display the direction, speed, and speed-history

outputs that the application produces.

The motionDetectionsystem class and the node class are the two Java source files

that the user interface component use. Figure 66 and Figure 67 present the class diagram

of the motionDetectionsystem class. The motionDetectionsystem class contains a variety

of inner classes and methods to support the GUI functionality. In addition, the

motionDetectionsystem class contains the “main” method of the application responsible

for initiating it. In addition to the above tasks, this class also is responsible for initiating

the proper data structures that the rest of the program uses.

Figure 66. motionDetectionsystem class diagram

Figure 67. Class diagram for the motionDetectionSystem inner classes

94

The node class presented in Figure 68 is also contained in the user interface

component. We consider the node class as a utility class that serves storage purposes. The

node configuration data that the user inserts, or the default, is stored in the node class

objects to be accessible from the rest of the application’s classes.

Figure 68. Node class diagram

2. Data Acquisition Component
The data acquisition component contains the SerialReader class. This class

provides the proper functionality for the data acquisition. First, it creates, opens, and

maintains a serial port connection (RS 232). When the connection is established, the class

is ready to receive the data returned from the MSP 410 system through the serial port.

Whenever the WSN returns an AM, the SimpleRead class receives it. Then by knowing

the AM and the data field format, it extracts the raw data that the sensors return. It stores

the message’s data in an array that passes to the algorithm’s component to qualify it. It

also is responsible for displaying the raw values that it receives from the WSN in a

command line window. Finally, the data acquisition component operation is controlled

from the user interface component through the functional buttons that the

motionDetectioSystem GUI provides. Figure 69 shows the class diagram for the

SerialReader class.

95

Figure 69. SerialReader class diagram

3. Algorithmic Component
The algorithmic component is the main component of the object-tracking

application. This component follows the logic mentioned in the above section. The first

part of the algorithm consists of the motionDetector class, which is responsible for

producing the detection target objects, based on the raw data that the data acquisition

component provides. The second part is the set of the three different scenarios classes and

implements the actual algorithmic process.

The motionDetector class is the core class of the application and serves multiple

purposes (Figure 63 & Figure 70). Its main task is to receive the array that contains the

raw WSN data from the SimpleRead class, to filter it, and to create detection outputs.

Those outputs contain the raw data that the sensor sent, the object’s category based on the

sensor’s signature, and the default speed, direction, and time to camera values. Those

outputs are stored in the “target” objects and then are passed to the proper scenario class,

based on the user’s choice. The motionDetector class is also responsible for calculating

the PIR and magnetic thresholds that are used in the filtering operation mentioned above.

In addition, it contains all the data structures (FIFO) that the scenario classes are using.

Moreover, it contains utility methods in order to support the operation of scenario classes:

it implements the FIFO and calculates the speed, speed history, average speed, and the
96

arrival time of the object to a specific point near to the TRSS camera’s position. Finally,

the motionDetector class is responsible for triggering the TRSS system and for informing

the user interface component about the application’s outputs.

The waitTime class (Figure 71), part of the algorithmic component, is a thread,

“utility” Java file that is used to produce the proper time delay whenever the object-

tracking application feeds with data and triggers the TSSRv3 system. It is called by the

motionDetector class

Figure 70. Class diagram for the motionDector class

97

Figure 71. Class diagram for the waitTime class

The second part of the algorithm component is the set of scenario classes. The

classes implement the algorithmic manipulation of the detections (target objects),

mentioned above in the related section, and produce, with the cooperation of the

motionDetector class, the desired outputs. Specifically, they are responsible for

producing the object’s direction output and for placing the target object in the correct

node’s data structure. All three scenario classes are similar, containing a long series of

selection statements. The basic class is the straightRoadScenario, the rest are developed

based on it. Their differences come from the different topologies they serve. Figure 72

presents the scenario classes diagrams.

Figure 72. Class diagram for the scenarios classes

98

4. Information Flow
Whenever the configuration of the object-tracking application ends, the flow of

the information through the application is as follows: the MSP 410 wireless sensor

network senses and returns AM to the system’s gateway MBR410CA. The gateway

forwards the messages through a serial port to the base station (PC). The SimpleReader

class receives the AM and extracts the useful information. Then it forwards the raw data

to the motionDetector class. The motionDetector class filters the data identified and

produces detection objects and identifies what kind the detected object is. Then it

forwards the target objects to the selected scenario class. The scenario class implements

the algorithmic process and, with the motionDetector and waitTime classes’ cooperation,

produces the required outputs (e.g., direction, speed). Those outputs are sent to the user

interface where they displayed. In addition, if the application is cooperated with the

TSSR system, the motionDetector class triggers the TSSR, which takes the pictures and

then forwards them to the FTP server. Figure 73 demonstrates the information flow by

using the application’s component description, while the next section summarizes the

object-tracking application’s products.

Figure 73. Information flow inside and outside the object-tracking application

99

5. Object-Tracking Outputs
As mentioned above, the outputs that the object-tracking application produces are:

the direction, based on the specific scenario that the application currently runs; the speed,

based on the time difference between sequential detections; and the speed history and

average speed, produced by holding historical detection data. Finally, the timeToCamera

output specifies, based on the object’s current direction and speed, the object’s arrival

time at a specific point. All the above outputs are produced or updated per detection and

displayed in the right window of the application’s GUI (Figure 74). In addition, a

command line window (Figure 76) is used to display all the outputs and the raw values

that the object-tracking application receives from the MSP 410 wireless sensor network.

Finally, Table 5 summarizes all the outputs per scenario.

100

Figure 74. Object-tracking application’s output in the GUI window

101

Object-tracking Application’s Outputs

Scenario Object’s Direction Speed ory Estimate Commands
id

Speed Hist
& average
speed

Arrival
Time

Straight- Human Inbound

m/sec for all

odeid# m/sec

Selected

e

road Vehicle

Outbound
Nodeid
the nodes that
detected the
object and the
corresponding
speed.
Computes the
average speed

n
m/sec

sec
scenario
Start
Pause
Resum
Exit

ra fires Came

T-road Human Inbound

t

o Right

m/sec for all

odeid# m/sec

sec Selected

e

Vehicle

Outbound
Left to Righ
Right to Left
Inbound Left t
Outbound Left to Right
Inbound Right to Left
Outbound Right to Left

Nodeid
the nodes that
detected the
object and the
corresponding
 speed.

es theComput
average speed

n
m/sec

scenario
Start
Pause
Resum
Exit

ra fires Came

Crossroa Human Inbound

t

t

m/sec for all

odeid# m/sec

sec Selected

e

ds Vehicle

Outbound
Left to Righ
Right to Left
North to South
South to North
Inbound Left to Righ
Outbound Left to Right
Inbound Right to Left
Outbound Right to Left
Inbound North to South
Outbound South to North
Left to Right North
Right to Left North
North to South Left
North to South Right

Nodeid
the nodes that
detected the
object and the
corresponding
speed.
Computes the
average speed

n
m/sec

scenario
Start
Pause
Resum
Exit

ra fires Came

Table 5. Object-tracking application’s outputs

102

Figure 75. Object-tracking application’s output in the command line window

he purpose of this chapter was to present the main objective of the object-

trackin

T

g application. It describes the motivation, the application requirements, the design

and programming issues, and the application’s software components. The object-tracking

application is a complete and useful application, sited in the systems control station,

whose purpose is to demonstrate a real-world implementation of the wireless sensor

network systems. The next chapter continues with the system testing and evaluation.

103

V. TESTING AND EVALUATION

A. HARDWARE TESTING AND EVALUATION
One of the important initial steps for the object-tracking application

implementation was to determine the way that the application should use the MSP 410

wireless sensor network system. Because the information that Crossbow provides in its

manuals is insufficient, we had to performe additional, primitive hardware testing. The

purpose of the testing was to identify some of the required wireless sensor network

system characteristics in order to use them in the object-tracking application

implementation and, later on, as the application deployment guide. Thus, we focused our

tests in an attempt to identify two different characteristics: the maximum RF distances

between the nodes and the sensors characteristics. The tests were performed outdoors in

an uncontrolled environment but are adequate for our purpose. The following sections

present the test results.

1. RF Range Test
The maximum RF distance tests were performed outdoors across a field. We

placed the sensors at a 44 cm height from the ground. The testing height was based on the

object-tracking application requirements to detect humans and cars. During the tests we

used the xserve and the MOTE-VIEW Crossbow applications to evaluate the connectivity

between the nodes that we used. We performed all the tests under similar conditions: on

sunny days with temperatures around 20 degrees Celsius and low humidity. In addition,

we used new batteries for the system’s nodes.

We followed two different approaches for the tests. For the first one we initially

placed the nodes close to each other and to the MSP 410 gateway and we left them be

connected. Then we moved both the sensors 15 meters away from the gateway and we

checked the connectivity. Both of them, as we had expected, were connected directly to

the base station. The next steps were to increase the distance between the two nodes.

Initially, we used five meter steps, later two meter steps, and finally one meter until we

lost the connectivity. We performed the test five times; the average maximum distance

between nodes that we achieved was 65 meters.

104

In the second set of tests, we used a quite different approach. We first operated

only the gateway and one of the nodes: when the node connected to the gateway, we

again moved the node a distance of 15 meters away from the gateway. Then we placed a

second node 65 meters away from the first node (the maximum average distance

achieved in the previous experiment), and we operated it. We performed this experiment

also five times. In all of them, the nodes did not establish connection in a reasonable

amount of time (15 minutes). Then, we started reducing the distance between the nodes,

using two meter steps and a ten minute waiting time. The average distance at which the

nodes finally connected to each other was 45 meters.

After evaluating the experimental results of the above two tests, based on the

object-tracking requirements, we concluded the following. It seems that it is easier for the

MSP 410 nodes to maintain their connectivity than to establish a new one when the

distance between them is more than 45 meters. The object-tracking application requires

each node to maintain connectivity with at least two neighboring nodes on each side.

Thus, we conclude that a reasonable deployment distance between the nodes, placed at a

height of 40cm from the ground, that serves the application requirements, is 20 meters.

This deployment allows the system to maintain the connectivity even if it loses an

intermediate node. In addition, if a node must be replaced by a new one, the new node

will be connected in a reasonable amount of time.

2. Environmental Influence on the PIR Returns
A preliminary experiment that we performed was related to the return PIR values

from the environment. The purpose of this experiment was to identify how the

environment temperature affects the return PIR values. We performed this experiment

using four different MSP410 nodes, which we placed in a solitary outdoor position to

avoid returns from objects detections. Two of the nodes were from the old MSP 410

system (Crossbow claims that it was an experimental system); and the remainder were

from the new set that we used in our deployment. We operated the nodes for more than

24 hours and collected the data through MOTE-VIEW. Figure 76 presents the return PIR

values from one of the new nodes. Figure 77 completes the above Figure 76 by

displaying the temperature changes during the test period. All the return patterns were

similar, although the new MSP 410 set nodes seemed more stable. The analysis of the

PIR patterns indicated that the environmental temperature has a considerable affect on the

PIR values.

Figure 76. Fluctuation of the returned PIR value

Temperature

0

5

10

15

20

25

15:00 20:00 1:00 6:00 11:00 15:00

Time

Te
m

pe
ra

tu
re

Figure 77. Temperature change

105

106

After evaluating the results of the above experiment, we concluded that,

especially for outdoor deployments of the MSP 410 wireless sensor network system, the

environmental temperature affects the return PIR values. During the development of the

object-tracking application, we used this information to design our PIR threshold

mechanism. The experimental results agree with a Crossbow verbal confirmation that the

PIR sensors of the MSP 410 system are affected by the environmental temperature.

Crossbow also confirmed that the influence is greater if wind is blowing in the area of

deployment.

We performed similar experiments for the magnetic sensor, to identify how it

responds when the magnetic field is changed. It seems that the magnetic sensor is more

capable of calibrating itself to fit the environmental conditions. Thus, if the changes in

the magnetic field are slow, the sensor is able to adjust its internal threshold level and to

avoid false returns. The object-tracking application also uses its own magnetic threshold

to improve the application’s response during the period that the sensor recalculates its

internal threshold.

3. Sensor Sensing Range and Detection Probability

To add to our knowledge about the optimum sensing ranges of the MSP 410

nodes, we performed two experiments. Crossbow also, in its manuals, refers to the

sensors’ sensing distances (chapter 3), but the information that it provides is not sufficient

for a real-world deployment. We designed two experiments to detect different types of

objects. In the first experiment, the node detected vehicles, in the second, humans. We

used the same node for both experiments, to avoid any differences between nodes. We

used outdoor deployment in both situations, and we conducted the tests under similar

environmental conditions: on sunny days with temperature of 20 degrees Celsius and

calm winds . The node’s position was at a height of 44 cm and only one of the node’s PIR

sensor monitored the object path. As a monitoring tool, we used the object-tracking

application for evaluation of the results.

a. Vehicle Detection Experiment
In the first experiment, we used vehicles as our target objects for

identification. We placed the node close to the road and gradually increased the distance

from it in one meter steps. For the target, we used the normal road traffic. During the first

part of the experiment we tried to identify differences in the sensors’ returns for different

vehicle types: we did not notice a great fluctuation. Thus we decided to continue using

the road’s normal traffic as our target. The cars’ speed was approximately 32 km/h

(20mph). We detailed PIR, quad, and magnetic returns from the node. In addition, we

kept records of the node’s distance from the targets and the number and type of

detections that the node returned. Each step of the experiment was conducted 15 times.

Figure 78 and Figure 79 present the changes in the return values as the distance from the

target was increased. Figure 80 demonstrates the variation in the number of detections as

the distance increased.

PIR average

880

900

920

940

960

980

1000

1020

1040

1 2 3 4 5 6 7 8 9 10 11 12

Sensing Distance

PI
R

 V
al

ue
s

Figure 78. Average returned PIR values per distance from a car’s path

107

mag average

0

100

200

300

400

500

600

700

1 2 3 4 5 6 7 8 9 10 11 12

Sensing Range

m
ag

 V
al

ue
s

Figure 79. Average returned mag values per distance from a car’s path

Detections

0

2

4

6

8

10

12

14

16

1 2 3 4 5 6 7 8 9 10 11 12

Sensing Range

N
um

be
r o

f D
et

ec
tio

ns

PIR Detections
mag Detections
Application's Detections

Figure 80. Change in the number of detections as the distance from a car’s path increased.

108

After evaluating the above experimental results, we concluded the

following: In general, as the distance from the object’s path increased, the returned PIR

and magnetic values decreased. In addition, the quad value that is tied up with the PIR

detections became unstable and the detection probability decreased. The returned PIR and

magnetic values are the highest for a range of distances between two to six meters from

the object’s path. For those distances also, the quad value was stable and the detection

probability had its highest values.

From very short distances, less than two meters, the nodes were not very

sensitive. Although this result seems strange, it happens because of the way the sensors

work, especially the PIR. The PIR sensor uses a set of sensing beams and monitors the

changes between them to determine detection. From very short distances from the object,

those beams and the sensing field of view are too narrow and thus not very accurate. This

also explains why the sensor for large distances is not efficient enough to detect more

than one car going the same direction at the speed, following one another at a reasonable

distance. In that situation the projection of the sensing beam onto the object’s path (road)

is very wide, so it is difficult for it to return two detections for two cars close together.

Figure 81 highlights this issue.

Figure 81. Node topologies that affect the system’s performance.

109

Our conclusion from this experiment was that the returned magnetic

values are more stable, compared to the PIR values, as the distance increases; but the PIR

sensor manages to return car detections from greater distances. In addition, the object-

tracking application evaluates the returned messages by using all the PIR, quad, and mag

values to determine a detection: this seems most effective when it returns the maximum

number of detections, as compared to the number of detections per sensor.

b. Human Detection Experiment
The second experiment was to detect humans. We used the same set-up

and plan as in the car detection experiment. In this experiment, each run was to detect the

same target human. The target’s speed was around 5 km/h (3 mph) and the human’s

height was 1.75 meters, and the environmental conditions were similar to those of the car

detection experiment. During this experiment we monitored only the PIR and quad

values, because the human did not carry any metallic objects. The following figures

present the experimental results from this experiment. Figure 82 illustrates the returned

PIR values per distance, Figure 83 the total amount of detections per distance.

PIR Average

600

650

700

750

800

850

900

950

1000

1050

1 2 3 4 5 6 7 8 9 10

PIR Return Values

Se
ns

in
g

R
an

ge

PIR average
PIR average without outliers

Figure 82. Average returned PIR values per distance from the human’s path

110

Number of Detections

0

2

4

6

8

10

12

1 2 3 4 5 6 7 8 9 10

Sensing Range

N
um

be
r o

f D
et

ec
tio

ns

Complete Detections
Application Detections

Figure 83. Change in the number of detections as the distance from the human’s path

increased

In evaluating the results of this experiment, we identified similarities with

the car detection experiment. For short distances, here also the PIR sensor is not very

sensitive, but for a range of distances from two to six meters the PIR and the quad values

are stable. In this experiment, the effective range of the PIR sensor is shorter than in the

car detection experiment. One interesting observation is that, for large distances in the car

detection experiment, the PIR sensor was not able to separate objects that were close

together, while in the human detection experiment for the same situation the PIR sensor

returned more than one detection.

Finally, during all the experiments that we performed using the MSP 410

wireless sensor network system, we observed that the node’s battery level significantly

affected the system’s characteristics. Although we did not perform a specific experiment

about the battery level, it seems that it affects not only the node’s sensing characteristics,

but also its communication characteristics.

111

112

All the above experiments are important for the object-tracking

application development. They improve the description of the MSP 410 system’s

characteristics that the Crossbow manuals include. In addition, these experiments helped

us design many of the application deployment plans that relate to the node sensing

characteristics, environmental effects, and topological considerations. To complete the

testing and evaluation discussion, the next section presents the results of additional

experiments with the object tracking application.

B. OBJECT-TRACKING APPLICATION: TEST AND EVALUATION
The preceding section describes the tests that we performed on the MSP 410

wireless sensor network system. The purpose of this section is to discuss and evaluate the

object-tracking application based on additional tests that we performed. This section also

provides recommendations for the application.

1. Evaluation of the Object-Tracking Application
The evaluation of the object-tracking application is based on the tests that we

performed, especially the final steps, where we evaluate the whole system. We also

performed two “official” tests of the application within the context of the TNT field

experiments. We performed the application evaluation by comparing the experimental

results and theoretical capabilities of our product with the initial requirements and

application assumptions discussed in previous chapters.

The application was developed to demonstrate a real-world use of a wireless

sensor network in object tracking. In evaluating the final product with respect to its

intended purpose, we conclude that the object-tracking application was successful.

Although it is a research prototype and not a commercial product, our application is a

simple, stable, stand-alone system capable of demonstrating an important application of

WSNs. It takes raw data from the WSN, aggregates it, evaluates it, and based on the

evaluation, produces detection alerts and tracks the object to provide motion outputs.

Although it can be easily used on top of other WSN products, the object-tracking

application was developed for the MSP 410 WSN and uses its characteristics to produce

its outputs. The application reliability is mostly based on the MSP 410 reliability.

Although we used techniques to increase the application redundancy and reliability, the

application is dependent on the node returns. If the WSN does not return proper signals,

113

the application will have difficulty in producing reliable outputs. During the application

tests, we identified differences between the old and the new MSP 410 systems that we

had available. The new system seems more stable, probably because it uses better the

internal thresholds, especially for the PIR sensor. We saw great differences in the

application performance during the transition from the old to the new Crossbow system.

The preceding sections describe the experimental results of the MSP 410 system.

The object-tracking application used them to increase its reliability. Its use of the proper

scenario selection, optimum topology of the eight available WSN nodes, and the efficient

processing of the returned data increased the system’s overall performance. Figure 81,

and Figure 84 present the application enhancement of the detection probability per node.

The additional enhancement is provided by the object-tracking application because of the

redundancy that it supports. As is described in chapter 3, the application reacts efficiently

and produces data even if the WSN loses a number of nodes. In addition, it is able to

handle situations in which one or more nodes do not detect the object. In general, the

application redundancy and reliability enhance the characteristics of the WSN and make

the entire system more attractive.

The decision for data manipulation at the base station was another aspect of the

application that had to be evaluated. Based on the MSP 410 nodes’ characteristics and

also the limited number of nodes that the application had available, the above choice

seems reasonably.

The final aspect of the application that we evaluate is the use of WSN for object

tracking. As chapter 2 shows, the WSN is an efficient solution for an application that

requires long-lasting deployment and serves low-rate data transmission from the

environment. Given this, we assumed that the object-tracking application can be

deployed indoors in a corridor or outdoors by a remote road without heavy traffic. Thus,

the application assumes that there is one object being tracked at a time by the system. The

final product oversubscribes that assumption providing accurate outputs for more than

one object inside the system if they are going in the same direction Their order inside the

system does not change and the distance between them allows their resolution by the

MSP 410 (the current application’s configuration support up to three objects at the same

time inside the system. The system’s capacity can be easily increased). In addition, under

some circumstances the application is able to track more than one object inside the

system having different directions (especially in the T-road and crossroads scenarios).

The application’s algorithm that chapter four describes promises that every

moving object inside the system will be detected and tracked. The algorithm actually

requires two or three nodes in the row to produce the outputs. The way the algorithm

works and the fact that there are 8 available nodes assures the success of the application.

The already high detection probability that the MSP 410 provides is enhanced by the

application. The experimental results of the final product indicate that the application

provides a high probability for object detection and tracking at speeds up to 72km/h (45

mph). Figure 84 presents pictures taken during the final tests of the application, in which

the car’s speed is 64 km/h (40mph). The scenario was straight-road, we used six MSP

410 nodes, and their topology was along both sides of the road. The road was five meters

wide and the distance between the nodes was 20 meters. The nodes were 44 cm high, on

top of the card boxes displayed in the pictures. The weather was cloudy, without wind,

with a temperature of 18 degrees Celsius. During this test we tested the application at

three different speeds: 16km/h (10mph), 32 km/h (20mph), and 64km/h (40mph). For

each speed we made five runs. The application detected and tracked the car in all runs.

Figure 84. Pictures taken during the final object-tracking application tests: Fort Ord

California, August 2005.

The TNT exercises that NPS performs every quarter at Camp Roberts, California,

gave us two additional opportunities to test and demonstrate the object-tracking

114

application. The first opportunity was the TNT experiments on May 24-25,, 2005, in

Camp Roberts and NPS, respectively. In both tests, the deployment was outdoors along

two sides of a road on sunny days, the distance between the nodes was 20 meters, and the

nodes’ height was 25 cm. In both experiments we used the old MSP 410 system and in

both experiments the object-tracking application cooperated with the TSSRv3 system.

The temperature for the first test was around 25 degrees Celsius, and for the second,

around 20 degrees Celsius. The test at Camp Roberts was a controlled experiment. The

traffic was low and controlled, in order to evaluate the system’s performance. The

deployment environment was similar to the environment in which the application is

expected to be used. Figure 85 presents photos that the TSSRv3 took during the

experiment and transmitted to the NPS ftp server through satellite communications

(Globalstar).

Figure 85. Pictures taken by the TSSRv3 system during the application’s test at Camp

Roberts, California, May 2005

The next, day May 25, we performed the same experiment with the same

application configuration on the NPS campus. During that test the deployment was along

an NPS road where the traffic was not controlled. Figure 86 presents pictures that the

TSSRv3 camera took during the second experiment and transmitted to the NPS ftp server

through a wireless 802.11b connection. Although the application development was in its

initial phase only the data capture and the detection-evaluation parts of the application

115

were available at that time, the results were encouraging. The application was able to

trigger the TSSRv3, even though the WSN was the old and quite unstable MSP 410

system.

Figure 86. Pictures taken from the TSSRv3 system during the application’s test at NPS,

Monterey, California, May 2005.

The third opportunity to test the object-tracking application in the context of a

TNT exercise was on August 30, 2005 at Camp Roberts. This test was an indoor

deployment. We placed the six available nodes in a way that simulated a corridor inside a

building, using four meter distances between the nodes. The height of the nodes was 40

cm, on top of a wooden chair. The application’s topology was such that the “inbound”

direction was from the back of the building toward the front door. At the front door we

placed the TSSRv3 camera that the object-tracking application triggers. Although the

purpose of the experiment was not to identify motion inside the building, but only to

detect humans inside the building, the results were satisfactory. The application managed

to detect and track a human in motion inside the building, as Figure 87 indicates. In

addition, with minor changes in the program, the application succeeded also in its

primary purpose, to identify and trigger the camera whenever it detected humans inside

the building, as Figure 88 demonstrates. In both cases the pictures from the camera were

transmitted from the TSSRv3 system via cellular phone to the ftp server sited in the NPS.

The TNT experiment indicates that the application is stable enough also for

indoor deployment. In addition, it demonstrates that the object-tracking application, with

116

minor changes, can be used as a general detection system, a use that is simpler than

motion detection and tracking.

Figure 87. Pictures taken by the TSSRv3 system during the application’s test at Camp
Roberts, California, August, 2005

Figure 88. Pictures taken by the TSSRv3 system during the application’s test at Camp
Roberts, California, August, 2005

For all the scenarios except the straight-road, we performed mostly indoors tests.

Those scenarios used the same algorithm and concept as the straight-road scenario. The

direction was the major difference from the straight-road scenario; the speed and the

calculation for the other outputs are the same as in the straight-road.

The above evaluations and experiments indicate that the object-tracking

application succeeded in its initial requirements as a wireless sensor network

demonstration application.

117

118

2. Object-Tracking Application Deployment Recommendations
The preceding sections provided the application description and the test results.

This section will provide deployment recommendations for users of the object-tracking

application to optimize the application results. The two important steps that the user must

do are the scenario selection and nodes topology, for both indoor and outdoor

deployments. The selected scenario must be close to the real deployment environment.

The following paragraphs present recommendations for the nodes topology.

Distance between the nodes is the first issue. The distances have to be appropriate

so that they fit within the available deployment space. The user must keep a balance

between the number of deployed nodes and the distance between them. The minimum

number of nodes that the object-tracking application requires is three; the maximum that

it can handle is eight. The more nodes that the application uses, the more reliable and

accurate the results produced. The application prefers to use large distances between the

nodes. The maximum deployment distance that we recommend, which depends also on

the nodes’ height, is 20 meters for a node-height of around 40cm from the ground in

moderate vegetation. This distance provides redundancy in the MSP 410 system, and

thus, its ability to respond and handle node failures. In addition, the larger the distances

between the nodes that the application uses, the more accurate and reliable the results.

Large distances provide the application with enough time to collect and process the data,

in order to produce the desirable outputs. Finally, the user must be careful not to place the

nodes too close to each other, because sensing-area overlapping is not desirable for the

application.

Node height is another deployment parameter that affects the application’s

performance. The nodes’ height affects the communication distance, but more

importantly, it affects the sensors’ performance. The nodes’ height must be adjusted

based on the kind of object that the object-tracking application must detect and track. It is

preferable for the PIR to be able to sense the main heat source of the object (e.g. a

vehicle’s engine); similarly, for the magnetic sensor, it is better to monitor the main

metallic mass of the object. Careful node-height adjustment maximizes the sensors’

returns and ensures the RF communication.

119

During the system’s deployment, one or both sides of the road can be used. The

choice mainly depends on the road’s width and structure. Our recommendation is to

deploy the system in a narrow road where all the nodes have an equal probability to

detect and track the moving object. In sum, the choice is up to the user: the important

issue is to provide the sensors an equal detection probability.

The distance that the nodes have from the object path is another issue with which

the user must take extra care of. As the experimental results indicate, the distance of the

nodes from the object affects the application performance. Very large distances and very

short distances fail to optimize the node sensing characteristics and the application’s

overall use. Our recommendation is to use a node-distances range from two to five meters

from the expected object’s path.

Additionally, we recommend deploying the system on a road or corridor where

there is light traffic. According to the application assumptions, it is capable of handling

multiple objects going the same direction (the current configuration supports up to three).

Finally, we recommend the user to follow the instructions that the application user

interface provides during the application’s configuration. In addition, we recommend

that, after the end of the configuration phase, leave the system a brief period of time to

produce and calibrate the thresholds it will use.

The purpose of this chapter was to continue the object-tracking application

overview describing the application’s testing and evaluation phase. We evaluate and

present the experimental results in an objective way. This chapter initially described the

test that we performed, first, to evaluate better the Crossbow MSP 410 wireless sensor

network system, and second, to have more robust inputs about the MSP 410 capabilities

during the object-tracking application’s development. The second part of the chapter

evaluated the application by analyzing the efficiency of the application implementation

and providing experimental results. In the final section the chapter provides the user with

deployment recommendations in addition to those that the application user interface

provides. The next chapter is contains our overall conclusions and suggests future

improvements that can be made to this project.

120

THIS PAGE INTENTIONALLY LEFT BLANK

121

VI. DISCUSSION

A. SUMMARY AND CONCLUSIONS
In this thesis we have explored the use of wireless sensor networks for object

tracking and motion estimation. We described the revolution in wireless communication

and important wireless implementation techniques and protocols. We introduced the

wireless sensor networks, theoretical characteristics and system constraints, and current

available and possible networking architectures and deployment topologies. We also

described some of the related standards. In chapter two we presented an overview of the

wireless sensor networks.

We continued in the second part of this thesis with a description of the hardware

and software products that we used. We focused on Crossbow wireless sensor network

products, by describing their characteristics and the functionality that they support.

In the third part of this thesis, we analyzed the object-tracking application which

is build on top of the Crossbow MSP 410 wireless sensor system. The object-tracking

application is an event-driven application sited in the base station. This project aimed to

demonstrate a real-world application that uses a WSN to communicate. Chapter four

presented the object-tracking application requirements and how our work implemented

them. It also analyzed the design, the logic, and the algorithm that we developed to

process the data returned from the wireless sensor network. It explained analytically how

the application produces detection signals and tracks the object’s motion. We explained

the selected scenarios and demonstrated the suitable node topology for the application.

Chapter four also described the active message format that the MSP 410 system uses and

how we used the information that it contains. Further, it described the assumptions that

the designers make before the programming phase and analyzed the structure and the

functionality of the application’s software components.

The object-tracking application description continued in chapter five with the

system’s testing and evaluation. It describes additional tests that we performed on the

MPS 410 wireless sensor system’s communication and sensing characteristics and

122

evaluated the experimental results in the context of the object-tracking application. The

chapter also explains the application testing and evaluation and concludes with

deployment recommendations.

Finally, we conclude our study of the wireless sensor network field with the

observation that it is a promising new technology. It could be a way to achieve ubiquitous

computing and embedded Internet. It seems an efficient solution for many applications

that involve deep monitoring of a deployment environment.

B. FUTURE WORK
The object-tracking application that we propose is by no means complete in every

respect. Future work should include thorough testing of the MSP 410 wireless sensor

network to produce more accurate and complete information about WSN characteristics

and capabilities. The object-tracking application would also benefit from additional

testing to evaluate all the possible deployment scenarios that it may cover and the

possible environments within which it can be deployed.

A weakness of the object-tracking application is its requirements. The object-

tracking application was built as a demonstration application on top of a specific wireless

sensor network system with a limited number of nodes. As an initial study, the object-

tracking application uses the simplest programming solutions. Although simple and easy

to follow, the solutions set limitations on the application efficiency and the maximum

number of nodes that the application is able to handle. Thus, future work may update the

application software components to achieve greater efficiency.

Possible future work could involve different wireless sensor network architectures

to efficiently handle a large number of nodes. The current flat network architecture that

the MSP 410 system has is suitable only for a small number of nodes. A study about the

xmesh network stack that the system uses would demonstrate the actual networking

capabilities of the system. Additional future work, based on complete WSN system

characteristics and xmesh evaluation results, could involve node programming capable of

performing specific tasks and targeting to improve the system’s overall performance.

Finally, future work must be done in the application’s user interface. An efficient,

smart, and user-friendly GUI is important. This GUI will help the user during the

123

configuration phase by making proper evaluations of the input values, by preventing the

user from inserting invalid data, and by avoiding application misbehavior. In addition, it

will provide wireless sensor network monitoring capabilities.

124

THIS PAGE INTENTIONALLY LEFT BLANK

125

APPENDIX. OBJECT-TRACKING SOURCE CODE

/**

 * <p>Title: motionDetectionSystem </p>

 * <p>Description: This class is responsible to provide a simple user interface.

 * Additionally it provides instruction, and displays the

 * object-tracking application's outputs

 *

 * Assumptions: The objects inside the system do not change order.

 * Inside the application exist up to 3 objects per time with the

 * same direction.

 * Inside the application exist objects with te same direction.

 * </p>

 * <p>Copyright: Copyright (c) 2005</p>

 * <p>Company: Naval Postgraduate School, Monterey, CA</p>

 * @author Vlasios Salatas

 * @version 1.0

 */

import java.awt.*;

import java.awt.event.*;

import java.applet.*;

import javax.swing.*;

import java.io.*;

import java.util.StringTokenizer;

public class motionDetectionSystem extends Frame {

 JFrame f = new JFrame("Object Tracking Application v1");

 JButton startButton = new JButton("Start");

 JButton pauseButton = new JButton("Pause");

 JButton resumeButton = new JButton("Resume");

126

 JButton exitButton = new JButton("Exit");

 JPanel mainPanel = new JPanel();

 JPanel buttonPanel = new JPanel();

 public static TextArea commandTextArea = new TextArea();

 public static TextArea dataTextArea = new TextArea();

 private motionDetector motDetector = new motionDetector();

 JLabel iconLabel = new JLabel();

 ImageIcon icon;

 // data structure to store the nodes' characteristics

 public int[][] userInputs = new int[8][3];

 public motionDetectionSystem() {

 try {

 jbInit();

 }

 catch (Exception e) {

 e.printStackTrace();

 }

 }

 private void GUI() {

 //Frame

 f.addWindowListener(new WindowAdapter() {

 public void windowClosing(WindowEvent e) {

 System.exit(0);

 }

 });

 //Buttons

 buttonPanel.setLayout(new GridLayout(1, 0));

 buttonPanel.add(startButton);

127

 buttonPanel.add(pauseButton);

 buttonPanel.add(resumeButton);

 buttonPanel.add(exitButton);

 startButton.addActionListener(new startButtonListener());

 pauseButton.addActionListener(new pauseButtonListener());

 resumeButton.addActionListener(new resumeButtonListener());

 exitButton.addActionListener(new exitButtonListener());

 //frame layout

 mainPanel.setLayout(null);

 mainPanel.add(commandTextArea);

 mainPanel.add(dataTextArea);

 mainPanel.add(buttonPanel);

 //Image display label

 iconLabel.setIcon(null);

 mainPanel.add(iconLabel);

 //Text areas

 commandTextArea.setBounds(5, 65, 300, 280);

 dataTextArea.setBounds(315, 65, 900, 280);

 buttonPanel.setBounds(0, 350, 650, 50);

 iconLabel.setBounds(650, 290, 380, 380);

 JMenuBar menuBar;

 JMenu menu3, menu1, menu2;

 JMenuItem straight, T_Road, crossroads, Default, Custom,

 insert_COM_Number;

 //Create the menu bar.

 menuBar = new JMenuBar();

 //Build the first menu.

128

 menu3 = new JMenu("COM#");

 menu3.setMnemonic(KeyEvent.VK_A);

 menuBar.add(menu3);

 insert_COM_Number = new JMenuItem("insert_COM_Number");

 menu3.add(insert_COM_Number);

 menu1 = new JMenu("Scenario");

 menu1.setMnemonic(KeyEvent.VK_A);

 menuBar.add(menu1);

 straight = new JMenuItem("Straight Road");

 menu1.add(straight);

 T_Road = new JMenuItem("T Road");

 menu1.add(T_Road);

 crossroads = new JMenuItem("Crossroads Road");

 menu1.add(crossroads);

 //Build the second menu.

 menu2 = new JMenu("Configure");

 menu2.setMnemonic(KeyEvent.VK_A);

 menuBar.add(menu2);

 Default = new JMenuItem("Default");

 menu2.add(Default);

 Custom = new JMenuItem("Custom");

 menu2.add(Custom);

 f.setJMenuBar(menuBar);

129

 insert_COM_Number.addActionListener(new insert_COM_NumberListener());

 straight.addActionListener(new straghtScenarioListener());

 T_Road.addActionListener(new TScenarioListener());

 crossroads.addActionListener(new crossroadsScenarioListener());

 Default.addActionListener(new defaultListener());

 Custom.addActionListener(new customListener());

 f.getContentPane().add(mainPanel, BorderLayout.CENTER);

 f.setSize(new Dimension(1250, 730));

 f.setVisible(true);

 // Provides the initial instructions

 dataTextArea.appendText("WELCOME" + "\n" + "\n" +

 "The object-tracking application is a research project" + "\n" +

 " that aims to demonstrate a real-world use of the " +

 " wireless sensor networks. " + "\n" +

 " It is producing detection and tracking outputs for object" +

 " that are moving inside the application" + "\n" + "\n" +

 " The user has two initial configuration options:" + "\n" +

 " The first is to custom configure the application by inserting the" +

 " system's configuration locally following the instructions." + "\n" +

 " The second choice is to use the configuration values that are" +

 " included in the configuration file." + "\n" + "\n" +

 " For the first choice the user uses the menu options and starts inserting
the" +

 " serial port COM# ('COM#' menu otpion)," + "\n" +

 " then it continues by selecting the deployment scenario under the
'Scenario' menu item," + "\n" +

 " finally, it follows the instructions that appeared in the GUIs window "
+ "\n" +

 " and selects the 'Custom' choice under the 'Configure' menu item." +
"\n" +

 " For the second option the user just chooses the 'Default' option" +

 " under the 'Configure' menu.");

130

 }

 public static void main(String[] args) {

 motionDetectionSystem theMotionDetectionSystem = new motionDetectionSystem();

 theMotionDetectionSystem.start();

 }

 public void start() {

 // build the GUI

 GUI();

 // Initialize the nodes' characteristics

 setDefaultNodeData();

 }

 public void printCommands(String data) {

 commandTextArea.appendText(data);

 }

 public void printData(String data) {

 dataTextArea.appendText(data);

 }

 class startButtonListener implements ActionListener {

 public void actionPerformed(ActionEvent e) {

 // initializes the counters

 motDetector.initialize();

 // Opens the serial port and starts reading

 SimpleRead.begin();

 // Displays the choice

 commandTextArea.appendText(" The Object Tracking application starts!" + "\n");

 System.out.println("Start Button pressed !" + "\n");

131

 } // end action performed function

 } // end inner class startButtonListener

 class pauseButtonListener

 implements ActionListener {

 public void actionPerformed(ActionEvent e) {

 // Pauses the serial port reader

 SimpleRead.pause();

 // Displays the choice

 commandTextArea.appendText("pause Button pressed !" + "\n");

 System.out.println("pause Button pressed !" + "\n");

 } // end action performed function

 } // end inner class pauseButtonListener

 class exitButtonListener

 implements ActionListener {

 public void actionPerformed(ActionEvent e) {

 // Terminates the application

 SimpleRead.exit();

 // Displays the choice

 commandTextArea.appendText("The Object Tracking ends!"+ "\n");

 System.out.println("exit Button pressed !" + "\n");

 } // end action performed function

 } // end inner class exitButtonListener

 class resumeButtonListener

 implements ActionListener {

 public void actionPerformed(ActionEvent e) {

 // restarts the application it is paused

 SimpleRead.resume();

 // Displays the choice

 commandTextArea.appendText("resume Button pressed !" + "\n");

132

 System.out.println("resume Button pressed !" + "\n");

 } // end action performed function

 }

 class insert_COM_NumberListener

 implements ActionListener {

 public void actionPerformed(ActionEvent e) {

 // Sends the inserted serial port number to the serial reader

 SimpleRead.comNumber = JOptionPane.showInputDialog(null,

 "Insert the com number for the serial port (COM#)");

 } // end action performed function

 }

 class straghtScenarioListener

 extends Frame

 implements ActionListener {

 public void actionPerformed(ActionEvent e) {

 // Sends to the motionDetector the scenario choice

 motDetector.setScenario("staight");

 // Display instructions

 dataTextArea.appendText("\n" + "\n" +

 "**” + “\n”

 "Your Choice is the Straigh Road Scenario." +

 "\n" + "\n" +

 "To Input your node's configuration " +

 "insert them in the Left window following the " +

 "instructions below:" + "\n" + "\n" +

 "The maximun number of nodes that the system can handle is 8." + "\n" +

 "Insert the node's data from the furthest to the nearest " +

 "following the order that the figure presents." + "\n" +

 "Insert the values based on the following the format:" + "\n" +

 "\n" +

133

 " nodeid: , distance from the previous node: , distance from the next node: "
+ "\n" +

 " e.g. 0,2,2 " + "\n" + "\n" +

 "When you will finish type -end- and choose the 'Custom' " +

 "choice under the 'Configure' menu option.");

 System.out.println("staight choice!" + "\n");

 // get the image from a spevific file

 getImage("straight-road_small.jpg");

 } // end action performed function

 } // end inner class straghtScenarioListener

 class TScenarioListener

 implements ActionListener {

 public void actionPerformed(ActionEvent e) {

 // Sends to the motionDetector the scenario choice

 motDetector.setScenario("TRoad");

 // Display instructions

 dataTextArea.appendText("\n" + "\n" +

 "***" + "\n" +

 "Your Choice is the T Road Scenario." + "\n" + "\n" +

 "To Input your node's configuration " +

 "insert them in the Left window following the " +

 "instructions below:" + "\n" + "\n" +

 "The maximun number of nodes that the system can handle is 8." + "\n" +

 "Insert the node's data following the order that the figure presents." + "\n" +

 "Insert the values based on the following the format:" + "\n" + "\n" +

 " nodeid: , distance from the previous node: , distance from the next node: "

+ "\n" +

 " e.g. 0,2,2 " + "\n" + "\n" +

 "When you will finish type -end- and choose the 'Custom' " +

 "choice under the 'Configure' menu option.");

134

 System.out.println("T-road choise!" + "\n");

 // get the image from a spevific file

 getImage("T-road_small.jpg");

 } // end action performed function

 } // end inner class TScenarioListener

 class crossroadsScenarioListener

 implements ActionListener {

 public void actionPerformed(ActionEvent e) {

 // Sends to the motionDetector the scenario choice

 motDetector.setScenario("crossroads");

 // Display instructions

 dataTextArea.appendText("\n" + "\n" +

 "***" + "\n" +

 "Your Choice is the crossroads Scenario." + "\n" + "\n" +

 "To Input your node's configuration " +

 "insert them in the Left window following the " +

 "instructions below:" + "\n" + "\n" +

 "The maximun number of nodes that the system can handle is 8." + "\n" +

 "Insert the node's data from the furthest to the nearest " +

 "following the order that the figure presents." + "\n" +

 "Insert the values based on the following the format:" + "\n" + "\n" +

 " nodeid: , distance from the previous node: , distance from the next node: "
+ "\n" +

 " e.g. 0,2,2 " + "\n" + "\n" +

 "When you will finish type -end- and choose the 'Custom' " +

 "choice under the 'Configure' menu option.");

 System.out.println("crossroads choise!" + "\n");

 // get the image from a spevific file

 getImage("crossroads_small.jpg");

 } // end action performed function

135

 } // end inner class crossroadsScenarioListener

 class defaultListener

 implements ActionListener {

 public void actionPerformed(ActionEvent e) {

 // It reads the configuration file

 // It sends the nodes' characteristics to the motionDetector

 // to prepare the set up

 readFile("object_tracking.txt");

 } // end action performed function

 } // end inner class defaultListener

 class customListener

 implements ActionListener {

 public void actionPerformed(ActionEvent e) {

 String[] tempStringArray = new String[8];

 String test = commandTextArea.getText();

 StringTokenizer st = new StringTokenizer(test, "\n");

 int i = 0;

 int j = 0;

 int k = 0;

 while (st.hasMoreTokens()) {

 tempStringArray[i] = st.nextToken();

 System.out.println(tempStringArray[i]);

 StringTokenizer st2 = new StringTokenizer(tempStringArray[i], ",");

 while (st2.hasMoreTokens()) {

 userInputs[j][k] = Integer.parseInt(st2.nextToken());

 k++;

 }

 k = 0;

 i++;

 j++;

136

 }

 while (j < 8) {

 for (int w = 0; w < 3; w++) {

 userInputs[j][w] = 0;

 }

 j++;

 }

 // sends the nodes' characteristics to the motionDetector

 motDetector.initializeNodes(userInputs);

 } // end action performed function

 } // end inner class insertListener

 private File imageFile;

 private String localDirectory = "/j2sdk1.4.1_02/bin/configuration_file";

 private FileInputStream fis = null;

 private static byte[] imageByteArray = null;

 private Image image = null;

 /**

 *

 * @param name

 */

 private void getImage(String name) {

 try {

 // read the file into a byte array

 imageFile = new File(localDirectory + "\\" + name);

 int length = 0;

 if (imageFile.exists()) {

 try {

 fis = new FileInputStream(imageFile);

 length = fis.available();

137

 }

 catch (Exception e) {

 System.out.println(

 "PROBLEM WITH fis = new FileInputStream(imageFile);");

 }

 imageByteArray = new byte[length];

 try {

 fis.read(imageByteArray);

 }

 catch (Exception e) {

 System.out.println("PROBLEM WITH fis.read(imageByteArray)");

 }

 //get an Image object from the payload bitstream

 Toolkit toolkit = Toolkit.getDefaultToolkit();

 image = toolkit.createImage(imageByteArray, 0, length);

 //display the image as an ImageIcon object

 icon = new ImageIcon(image);

 iconLabel.setIcon(icon);

 }

 }

 catch (Exception e) {

 System.out.println(" Problem With the getImage method" + e);

 }

 finally {

 try {

 if (fis != null) {

 fis.close();

 }

 }

 catch (Exception e) {}

138

 }

 } // End getImage

 /**

 *

 * @param name

 */

 private void readFile(String name) {

 String scenario = null;

 String comPort = null;

 String nodeid = null;

 String hold;

 String temp;

 int i = 0;

 int j = 0;

 try {

 FileReader fr = new FileReader(localDirectory + "\\" + name);

 BufferedReader br = new BufferedReader(fr);

 try {

 while ((hold = br.readLine()) != null) {

 StringTokenizer st = new StringTokenizer(hold, ":");

 temp = st.nextToken();

 if (temp.startsWith("scenario")) {

 scenario = st.nextToken();

 System.out.println("Scenario from file: " + scenario);

 }

 else if (temp.startsWith("comPort")) {

 comPort = st.nextToken();

 System.out.println("comPort from file: " + comPort);

 }

 else if (temp.startsWith("nodeid") && (i < 8) && (j < 3)) {

139

 userInputs[i][j] = Integer.parseInt(st.nextToken());

 System.out.println("for system id " + i + " nodeid from file: " +

 userInputs[i][j]);

 j++;

 }

 else if (temp.startsWith("preDistance") && (i < 8) && (j < 3)) {

 userInputs[i][j] = Integer.parseInt(st.nextToken());

 System.out.println("preDistance: from file: " + userInputs[i][j]);

 j++;

 }

 else if (temp.startsWith("postDistance") && (i < 8) && (j < 3)) {

 userInputs[i][j] = Integer.parseInt(st.nextToken());

 System.out.println("postDistance from file: " + userInputs[i][j]);

 i++;

 j = 0;

 }

 }

 fr.close();

 }

 catch (IOException ex1) {

 }

 }

 catch (FileNotFoundException ex) {

 }

 // sets the COM#

 SimpleRead.comNumber = comPort;

 // sets the scenario

 motDetector.setScenario(scenario);

 // sends the nodes' characteristics

 motDetector.initializeNodes(userInputs);

 }

140

 private void setDefaultNodeData() {

 for (int i = 0; i < 8; i++) {

 int j = 0;

 userInputs[i][0] = j;

 for (j = 1; j < 3; j++) {

 userInputs[i][j] = 10;

 }

 }

 }

 private void jbInit() throws Exception {

 } // end inner class pauseButtonListener

}

/**

 * <p>Title: node </p>

 * <p>Description: This is a utility class. Except the specific system that

 * it is facilitate with or without major changes it can be used

 * with any other similar hardware or topology.

 * The purpose of this class is to hold data related

 * to the ID and topological characteristic of the Crossbows

 * MSP410 system nodes.

 * Each node object carries: The distances from its neighbor

 * nodes. The node ID as it is predefined in the node's software

 * (normally it is the same ID with the one at the top of the

 * Crossbows MSP410 node's protection case. Additional it holds

 * the system ID. System ID is an internal ID for the specific

 * system and depends on the current topological scenario that

 * the Tracking Object application runs. Finally, the object

141

 * holds the distances from the current node to the camera.

 * </p>

 * <p>Copyright: Copyright (c) 2005</p>

 * <p>Company: Naval Postgraduate School, Monterey, CA</p>

 * @author Vlasios Salatas

 * @version 1.0

 */

public class node {

 public int nodeId = 0;

 public int systemId = 0;

 public int preDistance = 20;

 public int postDistance = 20;

 public int distanceToCamera = 0;

 public int distanceLastNodeCamera = 5;

 public node() {

 }

 public void setNodeId(int inputNodeId){

 nodeId = inputNodeId;

 }

 public void setSystemId(int inputSystemId){

 systemId = inputSystemId;

 }

 public void setPreDistance(int intupPreDistance){

 preDistance = intupPreDistance;

 }

 public void setPostDistance(int intupPostDistance){

 postDistance = intupPostDistance;

 }

 public void setDistanceToCamera(int inputDistanceToCamera){

 distanceToCamera = inputDistanceToCamera;

 }

142

}

/**

 *

 * <p>Title: SimpleRead </p>

 * <p>Description: This class is used as a Serial Port reader for the Object

 * Tracking application. It opens a serial port connection

 * and a related input stream, and it read the raw data (bytes)

 * returned from the Crossbow wireless sensor network system

 * MSP410. Then it extract the useful information based on the

 * message format that the raw data have and place them

 * inside an array in order to be available from the rest

 * software components of the application. The part of this class

 * that reads data from the serial port is based

 * on the SimpleRead.java file provided from the following URL

 * ref: java.sun.com/developer/ releases/javacomm/SimpleRead.java May 2005

 * </p>

 * <p>Copyright: Copyright (c) 2005</p>

 * <p>Company: Naval Postgraduate School, Monterey, CA</p>

 * @author Vlasios Salatas

 * @version 1.0

 */

import java.io.*;

import java.util.*;

import javax.comm.*;

import javax.swing.Timer;

public class SimpleRead implements Runnable, SerialPortEventListener {

 static CommPortIdentifier portId;

 static Enumeration portList;

 InputStream inputStream;

 SerialPort serialPort;

143

 static Thread readThread;

 int numBytes;

 static String comNumber = "COM5";

 int counter;

 // buffer to store the incomming messages

 byte[] holdArray = new byte[1000];

 //array used to store and send the proper data

 int[] dataArray = new int[8];

 //flag to control the program

 static boolean flag = true;

 /**

 * <p>Title: begin </p>

 * <p>Description: it open the com port and start reading data

 */

 public static void begin() {

 portList = CommPortIdentifier.getPortIdentifiers();

 flag = true;

 while (portList.hasMoreElements()) {

 portId = (CommPortIdentifier) portList.nextElement();

 if (portId.getPortType() == CommPortIdentifier.PORT_SERIAL) {

 if (portId.getName().equals(comNumber)) {

 SimpleRead reader = new SimpleRead();

 }

 }

 }

 }

 public static void pause(){

 flag = false;

 }

144

 public static void resume(){

 flag = true;

 }

 public static void exit(){

 //exit the system

 System.exit(0);

 }

 /**

 * Constructor declaration

 */

 public SimpleRead() {

 try {

 serialPort = (SerialPort) portId.open("SimpleReadApp", 20000);

 } catch (PortInUseException e) {System.out.println("port in use!!!!!!");}

 try {

 inputStream = serialPort.getInputStream();

 } catch (IOException e) {}

 try {

 serialPort.addEventListener(this);

 } catch (TooManyListenersException e) {}

 serialPort.notifyOnDataAvailable(true);

 try {

 serialPort.setSerialPortParams(57600,

 SerialPort.DATABITS_8,

 SerialPort.STOPBITS_1,

 SerialPort.PARITY_NONE);

 serialPort.setFlowControlMode(SerialPort.FLOWCONTROL_NONE);

 } catch (UnsupportedCommOperationException e) {}

 readThread = new Thread(this);

145

 readThread.start();

 }

 public void run() {

 while (flag == true) {

 try {

 Thread.sleep(2000);

 }

 catch (InterruptedException e) {}

 }

 }

 /**

 * Title: serialEvent

 * Description: it sets the serial port parameters and places the data

 * in a buffer

 * @param event

 */

 public void serialEvent(SerialPortEvent event) {

 switch(event.getEventType()) {

 case SerialPortEvent.BI:

 case SerialPortEvent.OE:

 case SerialPortEvent.FE:

 case SerialPortEvent.PE:

 case SerialPortEvent.CD:

 case SerialPortEvent.CTS:

 case SerialPortEvent.DSR:

 case SerialPortEvent.RI:

 case SerialPortEvent.OUTPUT_BUFFER_EMPTY:

 break;

 case SerialPortEvent.DATA_AVAILABLE:

 try {

 while (inputStream.available() > 0 && flag == true) {

146

 byte[] readBuffer = new byte[41];

 numBytes = inputStream.read(readBuffer);

 // Passes the data that the buffer holds into the message method

 message(readBuffer);

 }

 } catch (IOException e) {}

 break;

 }

 }

 /**

 * <p>Title: message </p>

 * <p>Description: This method first reconstract the message that the MSP410

 * nodes send through the gateway to the serial port. When the

 * message is completed it reads and places the importand

 * values to an array and passes them to the rest software

 * components of the Tracking Object application

 *

 * @param readBuffer byte[]

 */

 private void message(byte[] readBuffer){

 // data variables

 int SeqNumber;

 int SeqNumberF;

 int vref;

 int quad;

 int pir;

 int mag;

 int audio;

 // it initializes a motionDetector object that it is used later to pass the

 // the data to the motionDetector class.

 motionDetector detector = new motionDetector();

147

 // reconstracts the message

 if (readBuffer[0] == 126){

 counter = 0;

 for(int i = 0; i < numBytes; i++){

 holdArray[counter] = readBuffer[i];

 if (i >= 28 && readBuffer[i] == 126) {

 counter = 0;

 }

 counter++;

 }

 }

 // it stores the data into the data array

 else{

 for(int k = 0; k < numBytes; k++){

 holdArray[counter] = readBuffer[k];

 if (counter == 38 && readBuffer[k] == 126) {

 //store the nodeid

 dataArray[0] = unsigned_int(holdArray[11]);

 //store the parentid

 dataArray[1] = unsigned_int(holdArray[19]);

 //calcutate the seq# and store it

 SeqNumber = unsigned_int(holdArray[13]) +

 256 * unsigned_int(holdArray[14]);

 SeqNumberF = unsigned_int(holdArray[20]) +

 256 * unsigned_int(holdArray[21]);

 dataArray[2] = SeqNumberF;

 //calcutate the vref and store it

 vref = unsigned_int(holdArray[22]);

 dataArray[3] = vref;

 //calcutate the quad1 and store it

 quad = unsigned_int(holdArray[23]);

 dataArray[4] = quad;

 //calcutate the pir and store it

148

 pir = unsigned_int(holdArray[24]) +

 256 * unsigned_int(holdArray[25] & 0x03);

 dataArray[5] = pir;

 //calcutate the mag and store it

 mag = unsigned_int(holdArray[26]) +

 256 * unsigned_int(holdArray[27] & 0x03);

 dataArray[6] = mag;

 //calcutate the audio and store it

 audio = unsigned_int(holdArray[28]) +

 256 * unsigned_int(holdArray[29] & 0x03);

 dataArray[7] = audio;

 // send the data to the motionDetector class for furture manipulation

 detector.receiveData(dataArray);

 //test code print the received values in a command linr window

 System.out.println("--------------------RAW DATA-------------------" + "\n"+

 " id: " + dataArray[0] + " parent: " + dataArray[1] +

 " seq#FINAL: " + dataArray[2] +

 " vref: " + dataArray[3] +

 " quad: " + dataArray[4] + " pir: " + dataArray[5] +

 " mag: " + dataArray[6] + " audio: " + dataArray[7] + "\n" +

 "---");

 counter = 0;

 }

 counter++;

 }

 }

 }

 /**

 * Description: It convert the received integer value to unsigned int

 * @param nb

 * @return

149

 */

 static int unsigned_int(int nb){

 if(nb >= 0)

 return nb;

 else

 return(256+nb);

 }

 }

/**

 * <p>Title: motionDetector </p>

 * <p>Description: This class is responsible to implement the first part of the

 * part of the object-tracking application algorithm.

 * it is responsible first to reseive the data from the SimpleRead

 * class, then it determines if the received data are related

 * to an object's detection.

 * If the system has a detection it determines the object id

 * and then it stores all the information to a target object.

 * The target object then is forwarded to the proper scenario

 * class for further process.

 * Additionally, the class maintains and updates the proper

 * pir and mag thresholds.

 * Finally, the motionDetector class contains utility method

 * for the scenarios classes. Those methods are responsible

 * to control the systme's nodes data structures that hold the

 * data. Moreover they control the print out messages and trigger

 * whenever required the TSSRv3 system.

 *

 * Assumptions: The objects inside the system do not change order.

150

 * Inside the application exist up to 3 objects per time with the

 * same direction.

 * Inside the application exist objects with te same direction.

 * </p>

 * <p>Copyright: Copyright (c) 2005</p>

 * <p>Company: Naval Postgraduate School, Monterey, CA</p>

 * @author Vlasios Salatas

 * @version 1.0

 */

import java.io.File;

import java.text.NumberFormat;

public class motionDetector {

 // variables to hold the data

 // the commented variables are for future use

 public int nodeid;

 //private int parent;

 public int systemId;

 public double currentTime;

 public int seqNumber;

 //private int voltage;

 public int quad;

 public int pir;

 //private int audio;

 public int mag;

 public double speed;

 public String incomingObject;

 public String direction;

 public double timeToCamera;

 // variables used for the thresholds

 public static int magneticThr;

151

 public static int irThr;

 // file names used to triger the TSSRv3 system

 public static File file1, file2;

 // variables used as indexes in the

 public static int MAX_CAR_ARRAY_IDEX;

 public static int MAX_HUMAN_ARRAY_IDEX;

 public static int MAX_THRESH_ARRAY_INDEX = 20;

 // Initiate a double array to hild the received and produced object's data

 public static motionDetector[][] CarQueue;

 // the counter for the above queue

 public static int[] countersQueue;

 // variable that holds the senario that the program will use

 private static String Senario;

 // store the node's physical characteristics

 private static node[] nodeArray = new node[8];

 // Constract a new object for straight road scenario

 // in order to call the proper methods later

 private straightRoadScenario SRScenario = new straightRoadScenario();

 // Constract a new object for T road scenario

 // in order to call the proper methods later

 private TRoadScenario TRScenario = new TRoadScenario();

 // Constract a new object for crossroads scenario

 // in order to call the proper methods later

 private crossroadsScenario CRScenario = new crossroadsScenario();

 // utility variables to store the speed history

 public double[] speedHistory;

152

 public int speedHistorySize = 8;

 /**

 * Constructor

 */

 public motionDetector() {

 }

 public static void setScenario(String scenario){

 Senario = scenario;

 }

 /**

 * Title: initialize

 * Description: Initialize the counters

 */

 public static void initialize(){

 // set the system's properties

 // initialize the counters for each node array

 countersQueue[0] = 0;

 countersQueue[1] = 0;

 countersQueue[2] = 0;

 countersQueue[3] = 0;

 countersQueue[4] = 0;

 countersQueue[5] = 0;

 countersQueue[6] = 0;

 countersQueue[7] = 0;

 } // end initialize

 /**

 * Title: initializeNodes

 * Description: Initialize the system nodes

 * @param senario

153

 * @return

 */

 public void initializeNodes(int[][] userInputs){

 setThresholds();

 setNodesID(userInputs);

 nodeArray = setDefaultDistances(Senario, nodeArray, userInputs);

 }

 /**

 * Title: setNodesID

 * Description: Build node objects and determines the system's id that corresponds

 * to the physical node id and stores the data in the node[] array.

 * The physical node id is containe in the userInput double array

 * @param userInputs

 */

 public void setNodesID(int[][] userInputs){

 node node1 = new node();

 node1.setSystemId(0);

 node1.setNodeId(userInputs[0][0]);

 nodeArray[0] = node1;

 node node2 = new node();

 node2.setSystemId(1);

 node2.setNodeId(userInputs[1][0]);

 nodeArray[1] = node2;

 node node3 = new node();

 node3.setSystemId(2);

 node3.setNodeId(userInputs[2][0]);

 nodeArray[2] = node3;

 node node4 = new node();

 node4.setSystemId(3);

 node4.setNodeId(userInputs[3][0]);

 nodeArray[3] = node4;

154

 node node5 = new node();

 node5.setSystemId(4);

 node5.setNodeId(userInputs[4][0]);

 nodeArray[4] = node5;

 node node6 = new node();

 node6.setSystemId(5);

 node6.setNodeId(userInputs[5][0]);

 nodeArray[5] = node6;

 node node7 = new node();

 node7.setSystemId(6);

 node7.setNodeId(userInputs[6][0]);

 nodeArray[6] = node7;

 node node8 = new node();

 node8.setSystemId(7);

 node8.setNodeId(userInputs[7][0]);

 nodeArray[7] = node8;

 }

 /**

 * Title: setDefaultDistances

 * Description: Based on the scenario it forwareds the user's imput to the

 * proper scenario class in order for the insert distances to be set

 */

 public node[] setDefaultDistances(String senario, node[] initialNodeArray,

 int[][] userInputs){

 if (senario == "staight"){

 straightRoadScenario CSRScenario = new straightRoadScenario();

 SRScenario.setDefaultDistances(initialNodeArray, userInputs);

 }

 else if (senario == "TRoad"){

 straightRoadScenario CSRScenario = new straightRoadScenario();

 TRScenario.setDefaultDistances(initialNodeArray, userInputs);

 }

155

 else if (senario == "crossroads"){

 straightRoadScenario CSRScenario = new straightRoadScenario();

 CRScenario.setDefaultDistances(initialNodeArray, userInputs);

 }

 return initialNodeArray;

 } // End setDefaultDistances

 /**

 * Title: setThresholds

 * Description: Intitializes the threshold values and the arrays

 */

 public void setThresholds(){

 // initialize the default file

 motionDetector.file1 = new File("C:/LOADSHARE/x.txt");

 // set the thresholds

 magneticThr = 300;

 irThr = 700;

 // the value at this threshold is static and it is

 // compute for speed 10Km/h (2.777m/sec)

 // it is used to reset the system if it has a lot of time to detect an object

 timeThreshold = 15000;

 // set the array index for the objects

 MAX_CAR_ARRAY_IDEX = 4;

 // initialize the FIFO data structure for the detected objects

 CarQueue = new motionDetector[8][MAX_CAR_ARRAY_IDEX];

 // initialize an array that holds the counetrs for the queues

 countersQueue = new int[8];

 } // End setThresholds

 /**

 * Title: receiveData

 * Description: This is the first step of the algorithm.

156

 * It receives the data from the SimpleRead class and determines

 * if the returned message is a detection message or not.

 * It also, based on the returned values determines if the

 * detected object is car or human.

 * Then it places the reseved data and the default values for the

 * motion tracking into an object called target.

 * Then, based on the selected from the user scenario

 * it forwards the target object to the proper scenario class.

 * Finally, it is responsible to update the threshold values that

 * the application uses.

 * @param data

 */

 public void receiveData(int [] data){

 // build a target object to store the received and prodused data

 motionDetector target = new motionDetector();

 // it stores the system time into the target object

 target.currentTime = System.currentTimeMillis();

 // The commented variables are for future use.

 // They are received but they are not currently used in this version of the

 // application.

 // Stores the received node id

 target.nodeid = data[0];

 //parent = data[1];

 // Stores the received message seqNumber

 target.seqNumber = data[2];

 //voltage = data[3];

 // Stores the received quad

 target.quad = data[4];

 // Stores the received pir

 target.pir = data[5];

 // Stores the received mag

157

 target.mag = data[6];

 //audio = data[7];

 // Intialize and stores the default speed value

 target.speed = 0;

 // Intialize and stores the default incomingObject

 target.incomingObject = "unknown";

 // Intialize and stores the default direction

 target.direction = "unkown";

 // Intialize and stores the default timeToCamera

 target.timeToCamera = 0;

 // Test message that displays in the command line window the current

 // values of the thresholds

 System.out.println("********PirThr " + irThr + "MagThr " + magneticThr);

 // The following block of selections are based on the selected

 // from the user scenario.

 // Inside the selections, it is implemented the first part of the algorithm

 // that is responsible to determine the detection signals and the object's id.

 // Then the update target object is forwarded in the proper scenario calss.

 // Finally, if the message does not indicates a detection the data are used

 // to update the thresholds

 if (Senario == "staight"){

 // If the returned data contains only to the pir

 if(((target.pir >= irThr) && (target.quad == 1))){

 // The incoming object is characterized as humman because the returned

 // values are related only to the pir

 target.incomingObject = "humman";

 // Initialize the speed history variables for the current target object

 target.speedHistory = new double[speedHistorySize];

 for (int i = 0; i < speedHistorySize; i++){

 target.speedHistory[i] = 0;

 }

158

 // It place the proper target id to the target object based on

 // the system ids

 target.systemId = setTargetId(target.nodeid, nodeArray);

 // Send the updated target object to the straight-road scebario

 // for additional process.

 SRScenario.detect(target, nodeArray);

 }

 // If the returned data contains both pir and mag

 else if(((target.pir >= irThr) && (target.quad == 1))

 && (target.mag > target.magneticThr)){

 // The incoming object is characterized as car

 target.incomingObject = "car";

 // initialize the speed history variables for the current target object

 target.speedHistory = new double[speedHistorySize];

 for (int i = 0; i < speedHistorySize; i++){

 target.speedHistory[i] = 0;

 }

 // It place the proper target id to the target object based on

 // the system ids

 target.systemId = setTargetId(target.nodeid, nodeArray);

 // Send the updated target object to the straight-road scebario

 // for additional process.

 SRScenario.detect(target, nodeArray);

 }

 // If the reseved are not valid to produse a detection event, they are consider

 // as environmental returns and they are used to update the application's

 // thresholds.

 else{

 // send the data to update the thresholds

 pirThreshold(data);

 magThreshold(data);

159

 }

 }

 // When the selected scenario is T-road the following selection block is run

 // and implemetns the same stepts that the straight-road selection comments describe

 else if (Senario == "TRoad"){

 if(((target.pir >= irThr) && (target.quad == 1))){

 target.incomingObject = "humman";

 target.speedHistory = new double[speedHistorySize];

 for (int i = 0; i < speedHistorySize; i++){

 target.speedHistory[i] = 0;

 }

 target.systemId = setTargetId(target.nodeid, nodeArray);

 SRScenario.detect(target, nodeArray);

 }

 else if(((target.pir >= irThr) && (target.quad == 1))

 && (target.mag > target.magneticThr)){

 target.incomingObject = "car";

 target.speedHistory = new double[speedHistorySize];

 for (int i = 0; i < speedHistorySize; i++){

 target.speedHistory[i] = 0;

 }

 target.systemId = setTargetId(target.nodeid, nodeArray);

 SRScenario.detect(target, nodeArray);

 }

 else{

 pirThreshold(data);

 magThreshold(data);

 }

 }

160

 // when it receives the data it call the detect of the crossroads senario

 // method in order to extract usefull information

 else if (Senario == "crossroads"){

 if(((target.pir >= irThr) && (target.quad == 1))){

 target.incomingObject = "humman";

 target.speedHistory = new double[speedHistorySize];

 for (int i = 0; i < speedHistorySize; i++){

 target.speedHistory[i] = 0;

 }

 target.systemId = setTargetId(target.nodeid, nodeArray);

 SRScenario.detect(target, nodeArray);

 }

 else if(((target.pir >= irThr) && (target.quad == 1))

 && (target.mag > target.magneticThr)){

 target.incomingObject = "car";

 target.speedHistory = new double[speedHistorySize];

 for (int i = 0; i < speedHistorySize; i++){

 target.speedHistory[i] = 0;

 }

 target.systemId = setTargetId(target.nodeid, nodeArray);

 SRScenario.detect(target, nodeArray);

 }

 else{

 pirThreshold(data);

 magThreshold(data);

 }

 }

 } //End receiveData

 /**

 * Title: setTargetId

161

 * Description: Based on the insert node's topology from the user and the

 * system id that the program produces. It checks the id of the

 * node that send the detection and return the proper system id

 * for the target objects that holds the data.

 * @param targetId

 * @param nodeArray

 * @return

 */

 public int setTargetId(int targetId, node[] nodeArray){

 int systemID = 152;

 if (targetId == nodeArray[0].nodeId){

 systemID = 0;

 }

 else if (targetId == nodeArray[1].nodeId){

 systemID = 1;

 }

 else if (targetId == nodeArray[2].nodeId){

 systemID = 2;

 }

 else if (targetId == nodeArray[3].nodeId){

 systemID = 3;

 }

 else if (targetId == nodeArray[4].nodeId){

 systemID = 4;

 }

 else if (targetId == nodeArray[5].nodeId){

 systemID = 5;

 }

 else if (targetId == nodeArray[6].nodeId){

 systemID = 6;

 }

 else if (targetId == nodeArray[7].nodeId){

 systemID = 7;

162

 }

 return systemID;

 }

 /**

 * Title: resetCarArraysAndCounters

 * Description: Reset the counters and the node's arrays when the data that they

 * hold are too old

 */

 public void resetCarArraysAndCounters(){

 // reset the car counter

 countersQueue[0] = 0;

 countersQueue[1] = 0;

 countersQueue[2] = 0;

 countersQueue[3] = 0;

 countersQueue[4] = 0;

 countersQueue[5] = 0;

 countersQueue[6] = 0;

 countersQueue[7] = 0;

 // reset the car arrays

 CarQueue[0][0] = null;

 CarQueue[1][0] = null;

 CarQueue[2][0] = null;

 CarQueue[3][0] = null;

 CarQueue[4][0] = null;

 CarQueue[5][0] = null;

 CarQueue[6][0] = null;

 CarQueue[7][0] = null;

 } // end resetCarArraysAndCounters

 // utility variable to hold time and help to reset

163

 // the arrays in order to have correct results

 // it is used in the receiveData method

 public static long oldTime = 0;

 // valiable to set the time limit for the time check

 // which is performed inside the receiveData method

 // in order if the time space between the data is too

 // long to reset the arrays.

 public static long timeThreshold;

 /**

 * Title: computeSpeed

 * Description: Compute the object's speed based on the time difference

 * between the new and the old detection an in the distance

 * between the nodes

 * @param time1

 * @param time2

 * @param distance

 * @return

 */

 public double computeSpeed(double time1, double time2, int distance){

 double timeDiff = ((time2 - time1) / 1000);

 double speed = (distance /timeDiff); // speed in m/sec

 return speed;

 }

 /**

 * Title: rearrangeArray

 * Description: rearange the node's array to free space

 * by removing the oldest data

 * @param i

 * @param sysId

 * @param Counter

164

 * @param queue

 * @return

 */

 public motionDetector[][] rearrangeArray(int i, int sysId, int Counter,

 motionDetector[][] queue){

// int i = 0;

 while (i < Counter){

 queue[sysId][i] = queue[sysId][i + 1];

 i++;

 }

 // delete the last input of the array as reduntant

 queue[sysId][Counter] = null;

 return queue;

 }

 /**

 * Title: removeRedundantEntry

 * Description: Removes from the nodes' arrays old data that have already used

 * and rearrange the arrays.

 *

 * @param seqNum

 */

 public void removeRedundantEntry(int seqNum){

 for (int i = 0; i < 8; i++){

 for (int j = 0; j < MAX_CAR_ARRAY_IDEX; j++){

 if (CarQueue[i][j] != null && CarQueue[i][j].seqNumber == seqNum){

 int k = j;

 while(k < MAX_CAR_ARRAY_IDEX - 1){

 CarQueue[i][k] = CarQueue[i][k + 1];

 k++;

 }

 CarQueue[i][MAX_CAR_ARRAY_IDEX - 1] = null;

 }

165

 }

 }

 }

 // Utility variables uses in the computation of the PIR threshold

 private static int[] holdPirArray = new int[MAX_THRESH_ARRAY_INDEX];

 private static int holdPirArrayCounter = 0;

 /**

 * Title: pirThreshold

 * Description: Receives the returned values from the sensors

 * that are not related to the detections and calculates the

 * PIR threshold.

 * @param rawData

 */

 private void pirThreshold(int[] rawData){

 holdPirArray[holdPirArrayCounter] = rawData[5];

 if (holdPirArrayCounter == MAX_THRESH_ARRAY_INDEX - 1){

 int sum = 0;

 for (int i = 0; i < MAX_THRESH_ARRAY_INDEX; i++){

 sum = sum + holdPirArray[i];

 }

 irThr = sum / MAX_THRESH_ARRAY_INDEX;

 holdPirArrayCounter--;

 }

 else{

 holdPirArrayCounter++;

 }

 }

 // Utility variables uses in the computation of the mag threshold

 private static int[] holdMagArray = new int[MAX_THRESH_ARRAY_INDEX];

 private static int holdMagArrayCounter = 0;

166

 /**

 * Title: magThreshold

 * Description: Receives the returned values from the sensors

 * that are not related to the detections and calculates the

 * mag threshold.

 * @param rawData

 */

 private void magThreshold(int[] rawData){

 holdMagArray[holdMagArrayCounter] = rawData[6];

 holdMagArrayCounter++;

 if (holdMagArrayCounter == MAX_THRESH_ARRAY_INDEX - 1){

 int sum = 0;

 for (int i = 0; i < MAX_THRESH_ARRAY_INDEX; i++){

 sum = sum + holdMagArray[i];

 }

 magneticThr = sum / MAX_THRESH_ARRAY_INDEX;

 holdMagArrayCounter--;

 }

 }

 /**

 * Title: computeTimeToCamera

 * Description: Based on the object's distance to camera and speed it

 * computes the estimated arrival time to the camera's

 * focal point

 * @param distance

 * @param speed

 * @return

 */

 public double computeTimeToCamera(int distanceToCamera, double speed){

 double timeToCamera = distanceToCamera / speed;

 return timeToCamera;

167

 }

 // utility variable for the sendCommand in order

 // to manage appropriate the time delays

 private static int oldNodeid = 0;

 private static double oldSpeed = 0;

 private static motionDetectionSystem MDSystem = new motionDetectionSystem();

 /**

 * Title: sendCommand

 * Description: It responsible to inform the user with the prodused data

 * and to trigger the TSSRv3 system whenever is important

 *

 * @param nodeid

 * @param incomingObject

 * @param direction

 * @param ditectionTime

 * @param timeToCamera

 */

 public void sendCommand(int sysId, String incomingObject,

 String direction, double speed,

 double timeToCamera, double[] speedHistory){

 // Prints the prodused data in the application's command line window

 System.out.println("**");

 System.out.println("sysId: " + sysId + " incomingObject: " + incomingObject +

 " direction: " + direction + " speed: " + speed +

 " timeToCamera: " + timeToCamera);

System.out.println("**");

 // Displays the prodused data in the application's GUI

 MDSystem.printData("sysId: " + sysId +

 " incomingObject: " +incomingObject +

168

 " direction: " + direction +

 " speed: " + speed +

 " timeToCamera: " + timeToCamera +

 "\n");

 // This selsction triggers the TSSRv3 system and outputs the data

 // when the object passes the closest node to the base station

 // it an additional trigger to the TSSRv3 system that increases the system's

 // reduntancy

 // for deploymend that involves 8 nodes use this selection block

 if (sysId == 7){

 // it prints in the proper text area the comands

 changeFileName();

 MDSystem.printCommands(" TAKE PICTURE OBJECT NEAR NODE " + sysId +
"\n");

 MDSystem.printData("sysId: " + sysId +

 " incomingObject: " +incomingObject +

 " direction: " + direction +

 " speed: " + speed +

 " timeToCamera: " + timeToCamera +

 "\n");

 // it trigers the TSSRv3 system by calling the changeFileName

 // which renames the file name (file name is the trigger)

 changeFileName();

 }

 // for deploymend that involves 6 nodes commend the above selection block

 // and uncommend and use this

/*

 if (sysId == 5){

 // it prints in the proper text area the comands

 changeFileName();

169

 MDSystem.printCommands(" TAKE PICTURE OBJECT NEAR NODE " + sysId +
"\n");

 MDSystem.printData("sysId: " + sysId +

 " incomingObject: " +incomingObject +

 " direction: " + direction +

 " speed: " + speed +

 " timeToCamera: " + timeToCamera +

 "\n");

 // it trigers the TSSRv3 system by calling the changeFileName

 // which renames the file name (file name is the trigger)

 changeFileName();

 }

*/

 // For all the incoming objects

 if(direction.startsWith("inbound")){

 MDSystem.printCommands("\n" + " INCOMING OBJECT " + "\n");

 MDSystem.printData("***" +

 "sysId: " + sysId +

 " incomingObject: " +incomingObject +

 " direction: " + direction +

 " speed: " + speed +

 " timeToCamera: " + timeToCamera +

 "***" +

 "\n");

 // It uses the waitTime class to produse the proper delay to trigger the

 // TSSRv3 system

 // The delay is equal to the estimated arrival time (timeToCamera)

 if (waitTime.flag == true){

 waitTime.StopTask();

 // initiate a new delay trhead

 waitTime newDelay = null;

 // starts the thread

 newDelay.StartTask((int) timeToCamera);

170

 }

 else{

 // initiate a new delay trhead

 waitTime newDelay = null;

 // starts the thread

 newDelay.StartTask((int) timeToCamera);

 }

 }

 // call the printSpeedHistory to print out the speed history

 printSpeedHisrory(speedHistory);

 } // End sendCommand

 /**

 * Title: printSpeedHisrory

 * Description: Print out into the comand line window and in the GUI the

 * object's speed history and the average speed

 * @param counter

 * @param array

 */

 public void printSpeedHisrory(double[] array){

 double sum = 0;

 int j = 0;

 for (int i = 0; i < speedHistorySize; i++){

 if (array[i] != 0){

 System.out.println(" The object in " + i + " node had Speed " + array[i]);

 MDSystem.printData(" The object in " + i

 + " node had Speed "

 + array[i]

 + "\n");

 j++;

 sum = sum + array[i];

171

 }

 }

 System.out.println(" The Average Speed was " + sum/j);

 }

 /**

 * Title: printSpeedHisrory

 * Description: Change the file name in order to triger the TSSRv3 system

 *

 */

 public void changeFileName(){

 // alll the files must be in the C:/LOADSHARE/ directory

 // the TSSRv3 system uses the file name x.txt and the object-tracking

 // application (this program) the 1.txt

 file2 = new File("C:/LOADSHARE/1.txt");

 file1.renameTo(file2);

 }

}

/**

 * <p>Title: waitTime </p>

 * <p>Description: This class is used as time Tread for the Tracking Object

 * application. It is uses the java.util.Timer to schedule a

 * task. This task is a time delay for the TSSRv3 system in order

 * to delay the camera's trigger proper time. It is also able to

 * start and stop the timer whenever a new more update data are

 * available.

 * This class is based in the a similar class provided by

 * sun tutorials.

172

 *:http://java.sun.com/docs/books/tutorial/essential/threads/timer.html 06/06/2005

 * </p>

 * <p>Copyright: Copyright (c) 2005</p>

 * <p>Company: Naval Postgraduate School, Monterey, CA</p>

 * @author Vlasios Salatas

 * @version 1.0

 */

import java.util.Timer;

import java.util.TimerTask;

public class waitTime {

 static Timer timer;

 static boolean flag;

 static motionDetectionSystem MDSystem = new motionDetectionSystem();

 static motionDetector detector = new motionDetector();

 /**

 * Initialize the timer and mke the conversion from seconds to miliseconds

 * @param seconds

 */

 public waitTime(long seconds) {

 timer = new Timer();

 timer.schedule(new RemindTask(), seconds*1000);

 }

 /**

 * starts the countdown and trigger the TSSRv3 camera

 *

 */

 class RemindTask extends TimerTask {

 public void run() {

173

 System.out.println("Time's up! ************************");

 timer.cancel(); //Terminate the timer thread

 MDSystem.printCommands(" THE CAMERA FIRES" + "\n");

 // change the file name to triger the camera

 detector.changeFileName();

 flag = false;

 }

 }

 /**

 * Initiate a task

 * @param timeToCamera

 */

 public static void StartTask(long timeToCamera) {

 flag = true;

 new waitTime(timeToCamera);

 MDSystem.printCommands(" THE COUNTDOWN STARTS" + "\n");

 System.out.println("Task scheduled.");

 }

 /**

 * It stops the task

 */

 public static void StopTask(){

 System.out.println("Time stopped!");

 MDSystem.printCommands(" THE COUNTDOWN STOPS" + "\n");

 timer.cancel(); //Terminate the timer thread

 flag = false;

 }

}

174

/**

 * <p>Title: straightRoadScenario</p>

 * <p>Description: This class is responsible to implement the algorithmic

 * process for the straight-road scenario by receiving the

 * data from the motionDetector class.

 * First based on the raw data and in the stored data it produces

 * the direction of the object, and then the speed.

 * Finally, it is responsible to inform the data structures of

 * the neighbor nodes to continue tracking the object.</p>

 * <p>Copyright: Copyright (c) 2005</p>

 * <p>Company: Naval Postgraduate School, Monterey, CA</p>

 * @author Vlasios Salatas

 * @version 1.0

 */

import java.io.File;

public class straightRoadScenario {

 public straightRoadScenario() {

 }

 // Initialize a motionDetector object in order to be able to call the

 // proper methods

 private static motionDetector detector = new motionDetector();

 /**

 * Title: setDefaultDistances

 * Description: It takes the data related to the nodes physical characteristics

 * and place them in a array of node objects.

 * @param initialNodeArray

 * @param userInputs

 * @return

175

 */

 public node[] setDefaultDistances(node[] initialNodeArray ,

 int[][] userInputs){

 //set the distances in the array that holds the data related to nodes

 initialNodeArray[0].setPreDistance(userInputs[0][1]);

 initialNodeArray[0].setPostDistance(userInputs[0][2]);

 initialNodeArray[1].setPreDistance(userInputs[1][1]);

 initialNodeArray[1].setPostDistance(userInputs[1][2]);

 initialNodeArray[2].setPreDistance(userInputs[2][1]);

 initialNodeArray[2].setPostDistance(userInputs[2][2]);

 initialNodeArray[3].setPreDistance(userInputs[3][1]);

 initialNodeArray[3].setPostDistance(userInputs[3][2]);

 initialNodeArray[4].setPreDistance(userInputs[4][1]);

 initialNodeArray[4].setPostDistance(userInputs[4][2]);

 initialNodeArray[5].setPreDistance(userInputs[5][1]);

 initialNodeArray[5].setPostDistance(userInputs[5][2]);

 initialNodeArray[6].setPreDistance(userInputs[6][1]);

 initialNodeArray[6].setPostDistance(userInputs[6][2]);

 initialNodeArray[7].setPreDistance(userInputs[7][1]);

 initialNodeArray[7].setPostDistance(userInputs[7][2]);

 initialNodeArray[0].setDistanceToCamera(

 setSRSNodeDistanceToCamera(initialNodeArray[0].systemId, initialNodeArray));

 initialNodeArray[1].setDistanceToCamera(

 setSRSNodeDistanceToCamera(initialNodeArray[1].systemId, initialNodeArray));

 initialNodeArray[2].setDistanceToCamera(

 setSRSNodeDistanceToCamera(initialNodeArray[2].systemId, initialNodeArray));

 initialNodeArray[3].setDistanceToCamera(

 setSRSNodeDistanceToCamera(initialNodeArray[3].systemId, initialNodeArray));

 initialNodeArray[4].setDistanceToCamera(

 setSRSNodeDistanceToCamera(initialNodeArray[4].systemId, initialNodeArray));

 initialNodeArray[5].setDistanceToCamera(

 setSRSNodeDistanceToCamera(initialNodeArray[5].systemId, initialNodeArray));

176

 initialNodeArray[6].setDistanceToCamera(

 setSRSNodeDistanceToCamera(initialNodeArray[6].systemId, initialNodeArray));

 initialNodeArray[7].setDistanceToCamera(

 setSRSNodeDistanceToCamera(initialNodeArray[7].systemId, initialNodeArray));

 return initialNodeArray;

 }

 /**

 * Title: setSRSNodeDistanceToCamera

 * Description: It calculates the distance from the node to the

 * TSSRv3 camera-base station

 * @param systemId

 * @param initialNodeArray

 * @return

 */

 public int setSRSNodeDistanceToCamera(int systemId, node[] initialNodeArray){

 int distanceToCamera = 0;

 if (systemId == 0){

 distanceToCamera = initialNodeArray[0].postDistance +

 initialNodeArray[1].postDistance +

 initialNodeArray[2].postDistance +

 initialNodeArray[3].postDistance +

 initialNodeArray[4].postDistance +

 initialNodeArray[5].postDistance +

 initialNodeArray[6].postDistance +

 initialNodeArray[7].distanceLastNodeCamera;

 }

 else if (systemId == 1){

 distanceToCamera = initialNodeArray[1].postDistance +

 initialNodeArray[2].postDistance +

 initialNodeArray[3].postDistance +

 initialNodeArray[4].postDistance +

 initialNodeArray[5].postDistance +

177

 initialNodeArray[6].postDistance +

 initialNodeArray[7].distanceLastNodeCamera;

 }

 else if (systemId == 2){

 distanceToCamera = initialNodeArray[2].postDistance +

 initialNodeArray[3].postDistance +

 initialNodeArray[4].postDistance +

 initialNodeArray[5].postDistance +

 initialNodeArray[6].postDistance +

 initialNodeArray[7].distanceLastNodeCamera;

 }

 else if (systemId == 3){

 distanceToCamera = initialNodeArray[3].postDistance +

 initialNodeArray[4].postDistance +

 initialNodeArray[5].postDistance +

 initialNodeArray[6].postDistance +

 initialNodeArray[7].distanceLastNodeCamera;

 }

 else if (systemId == 4){

 distanceToCamera = initialNodeArray[4].postDistance +

 initialNodeArray[5].postDistance +

 initialNodeArray[6].postDistance +

 initialNodeArray[7].distanceLastNodeCamera;

 }

 else if (systemId == 5){

 distanceToCamera = initialNodeArray[5].postDistance +

 initialNodeArray[6].postDistance +

 initialNodeArray[7].distanceLastNodeCamera;

 }

 else if (systemId == 6){

 distanceToCamera = initialNodeArray[6].postDistance +

 initialNodeArray[7].distanceLastNodeCamera;

 }

178

 else if (systemId == 7){

 distanceToCamera = initialNodeArray[7].distanceLastNodeCamera;

 }

 else {

 System.out.println(" Node Input Error ");

 }

 return distanceToCamera;

 }

 /**

 * Title: setDirection

 * Description: It implement the first part of the algorithm by producing the

 * object's direction based on the node id that returns the

 * detection and on the stored data in the node's data structure

 * @param systemId

 * @return

 */

 public String setDirection(int sysId){

 String direction = "unknown";

 if (detector.CarQueue[sysId][0] == null){

 direction = "unknown";

 }

 else if (sysId > detector.CarQueue[sysId][0].systemId){

 direction = "inbound";

 }

 else if (sysId < detector.CarQueue[sysId][0].systemId){

 direction = "outbound";

 }

 return direction;

 }

 /**

179

 * Title: detect

 * Description: It implement the second part of the algorithm.

 * By using the proper method's calls outputs the object's

 * direction, and speed and stored them in the target object

 * parameter.

 * Its main purpose it to keep the the FIFO uptadated. Thus,

 * by calling proper method's removes the old values. Aditioanlly

 * by evaluating the objects direction it updates the proper node's

 * data structures.

 *

 * The nodes topology that this scenario use based on the system id

 * is the following

 * The number represent the system id of the nodes

 *

 * --0---------2---------4---------6-----------Base Station (TSSRv3 Camera-----

 * Road or Corridor

 * -------1---------3---------5---------7--------------------------------------

 *

 * Or for one side deployment

 * * --0----1----2----3----4----5----6---7--------Base Station (TSSRv3 Camera-----

 * Road or Corridor

 * --

 *

 * @param node

 */

 public void detect(motionDetector target, node[] nodeArray){

 int distance = 0;

 // check if the stored data are too old

 if (((long)target.currentTime - detector.oldTime) >= detector.timeThreshold){

 // if the data are too old the motionDetector's resetCarArraysAndCounters()

 // method reset the counters and empty the arrays

180

 detector.resetCarArraysAndCounters();

 }

 // place the curent system time to the oldTime variable

 // in order to check the next incoming message

 detector.oldTime = (long)target.currentTime;

 //Test code displays the stored thresholds in the command line window

 System.out.println("PirThr" + detector.irThr + "MagThr" + detector.magneticThr);

 // Call the setDirection to calculate the direction of the object

 target.direction = setDirection(target.systemId);

 // check if the node's data structure has stored target objects

 // If it has it use them to calculate the object's speed

 if (detector.CarQueue[target.systemId][0] != null){

 // checks the direction of the object in order to use

 // the proper distance in the speed computation

 // if the direction is "unknown" it use s the default distance

 // place the proper distance if the stored value is from the neighbor node

 if (target.direction == "inbound"

 && (target.systemId - detector.CarQueue[target.systemId][0].systemId == 1)){

 distance = nodeArray[target.systemId].preDistance;

 }

 // place the proper distance if the stored value is from the two node away

 else if (target.direction == "inbound"

 && (target.systemId - detector.CarQueue[target.systemId][0].systemId != 1)){

 distance = nodeArray[target.systemId].preDistance

 + nodeArray[detector.CarQueue[target.systemId][0].systemId].postDistance;

 }

 // place the proper distance if the stored value is from the neighbor node

181

 else if (target.direction == "outbound"

 && (detector.CarQueue[target.systemId][0].systemId - target.systemId == 1)){

 distance = nodeArray[target.systemId].postDistance;

 }

 // place the proper distance if the stored value is from the two node away

 else if (target.direction == "outbound"

 && (detector.CarQueue[target.systemId][0].systemId - target.systemId != 1)){

 distance = nodeArray[target.systemId].postDistance

 + nodeArray[detector.CarQueue[target.systemId][0].systemId].preDistance;

 }

 else{

 // do nothing use the default distance

 }

 // Calls the motionDetector's computeSpeed to calculate the object's speed

 // and the store the value in the target object

 target.speed = detector.computeSpeed(

 detector.CarQueue[target.systemId][0].currentTime,

 target.currentTime, distance);

 // Produses the speed history

 target.speedHistory = detector.CarQueue[target.systemId][0].speedHistory;

 target.speedHistory[target.systemId] = target.speed;

 // compute the time to be close to camera

 if (target.direction == "inbound"){

 target.timeToCamera = detector.computeTimeToCamera(

 nodeArray[target.systemId].distanceToCamera, target.speed);

 }

 // It calls the motionDetector's removeRedundantEntry which

 // checks and removes the old and redundant data from the arrays

182

 // in order to avoid future confusions

 detector.removeRedundantEntry(

 detector.CarQueue[target.systemId][0].seqNumber);

 }

 // The remaining prt of the method is responsible to store the above

 // prodused data in the proper node's data structure in order to infrom them

 // for the incoming object

 // if the target has been detected from node with system id 0

 if (target.systemId == nodeArray[0].systemId){

 if (target.direction == "unknown"){

 // If the node's data structure is full remove the first entry

 // to free space then it place the new entry

 if (detector.countersQueue[target.systemId + 1] ==

 detector.MAX_CAR_ARRAY_IDEX - 1) {

 // Removes the first element in the array to leave space

 // by calling the motionDetector rearrangeArray method. Rearange the

 // array from the first element "0" to the current array counter value.

 // It implements FIFO

 detector.rearrangeArray(0,target.systemId+1,
detector.countersQueue[target.systemId + 1],

 detector.CarQueue);

 // Place the target object in the proper node array

 detector.CarQueue[target.systemId + 1]

[detector.countersQueue[target.systemId + 1]] = target;

 }

 // If the data structure is not full, it just places the new entry

 else {

 detector.CarQueue[target.systemId + 1]

[detector.countersQueue[target.systemId + 1]] = target;

 detector.countersQueue[target.systemId + 1]++;

183

 }

 // Increases system's reliability by placing the detection

 // exept the next node into one more node, two nodes away in the row.

 // It uses the the static topology that the application has based on

 // the system id. Thus, the current node with the static system id, and

 // the figure provided in the beggining of this method explain which

 // nodes the current node has to inform.

 // Then it implemtents the same steps as in the above set of selections

 if (detector.countersQueue[target.systemId + 2] ==

 detector.MAX_CAR_ARRAY_IDEX - 1) {

 detector.rearrangeArray(0, target.systemId + 2,

 detector.countersQueue[target.systemId + 2],

 detector.CarQueue);

 detector.CarQueue[target.systemId + 2]

[detector.countersQueue[target.systemId + 2]] = target;

 }

 else {

 detector.CarQueue[target.systemId + 2]

[detector.countersQueue[target.systemId + 2]] = target;

 detector.countersQueue[target.systemId + 2]++;

 }

 }

 }

 // The remainder of the method checks the system id of the node that

 // returns the detection message, and the node's static topology

 // and based on the stored direction informs the proper data structures

 // following the steps that the above group of selection for the node with

 // system id 0 implements.

 // if the target has been detected from node with system id 1 to 6

 if (target.systemId != nodeArray[0].systemId

184

 && target.systemId != nodeArray[7].systemId){

 // If the direction is inbound it informs only the nodes in that direction

 if (target.direction == "inbound"){

 if (detector.countersQueue[target.systemId + 1] ==

 detector.MAX_CAR_ARRAY_IDEX - 1) {

 detector.rearrangeArray(0, target.systemId + 1,

 detector.countersQueue[target.systemId + 1],

 detector.CarQueue);

 detector.CarQueue[target.systemId + 1]

[detector.countersQueue[target.systemId + 1]] = target;

 }

 else {

 detector.CarQueue[target.systemId + 1]

[detector.countersQueue[target.systemId + 1]] = target;

 detector.countersQueue[target.systemId + 1]++;

 }

 // increases system reliability by placing the detection

 // exept the above next node into one more node if exist.

 // (e.g. it do not place the target object into the data

 // structure correspond to the system id 8 because it does not exist.

 if (target.systemId != nodeArray[6].systemId){

 if (detector.countersQueue[target.systemId + 2] ==

 detector.MAX_CAR_ARRAY_IDEX - 1) {

 detector.rearrangeArray(0, target.systemId + 2,

 detector.countersQueue[target.systemId + 2],

 detector.CarQueue);

 detector.CarQueue[target.systemId +

 2][detector.countersQueue[target.systemId + 2]] = target;

 }

 else {

 detector.CarQueue[target.systemId +

 2][detector.countersQueue[target.systemId + 2]] = target;

185

 detector.countersQueue[target.systemId + 2]++;

 }

 }

 }

 // If the direction is outbound it informs only the nodes in that direction

 else if (target.direction == "outbound"){

 if (detector.countersQueue[target.systemId - 1] ==

 detector.MAX_CAR_ARRAY_IDEX - 1) {

 detector.rearrangeArray(0, target.systemId - 1,

 detector.countersQueue[target.systemId - 1],

 detector.CarQueue);

 detector.CarQueue[target.systemId - 1]

[detector.countersQueue[target.systemId - 1]] = target;

 }

 else {

 detector.CarQueue[target.systemId - 1]

[detector.countersQueue[target.systemId - 1]] = target;

 detector.countersQueue[target.systemId - 1]++;

 }

 // increases system reliability by placing the detection

 // exept the above next node into one more node if exist.

 // (e.g. it do not place the target object into the data

 // structure correspond to the system id -1 because it does not exist.

 if (target.systemId != nodeArray[1].systemId){

 if (detector.countersQueue[target.systemId - 2] ==

detector.MAX_CAR_ARRAY_IDEX - 1) {

 detector.rearrangeArray(0, target.systemId - 2,

 detector.countersQueue[target.systemId - 2],

 detector.CarQueue);

 detector.CarQueue[target.systemId - 2]

[detector.countersQueue[target.systemId - 2]] = target;

 }

 else {

186

 detector.CarQueue[target.systemId - 2]

[detector.countersQueue[target.systemId - 2]] = target;

 detector.countersQueue[target.systemId - 2]++;

 }

 }

 }

 // If the direction is unkown it informs the nodes in both directions

 else if (target.direction == "unknown"){

 if (detector.countersQueue[target.systemId + 1] ==

 detector.MAX_CAR_ARRAY_IDEX - 1) {

 detector.rearrangeArray(0, target.systemId + 1,

 detector.countersQueue[target.systemId + 1],

 detector.CarQueue);

 detector.CarQueue[target.systemId + 1]

[detector.countersQueue[target.systemId + 1]] = target;

 }

 else {

 detector.CarQueue[target.systemId + 1]

[detector.countersQueue[target.systemId + 1]] = target;

 detector.countersQueue[target.systemId + 1]++;

 }

 if (target.systemId != nodeArray[6].systemId){

 if (detector.countersQueue[target.systemId + 2] ==

 detector.MAX_CAR_ARRAY_IDEX - 1) {

 detector.rearrangeArray(0, target.systemId + 2,

 detector.countersQueue[target.systemId + 2],

 detector.CarQueue);

 detector.CarQueue[target.systemId +

 2][detector.countersQueue[target.systemId + 2]] = target;

 }

 else {

187

 detector.CarQueue[target.systemId +

 2][detector.countersQueue[target.systemId + 2]] = target;

 detector.countersQueue[target.systemId + 2]++;

 }

 }

 if (detector.countersQueue[target.systemId - 1] ==

 detector.MAX_CAR_ARRAY_IDEX - 1) {

 detector.rearrangeArray(0, target.systemId - 1,

 detector.countersQueue[target.systemId - 1],

 detector.CarQueue);

 detector.CarQueue[target.systemId - 1]

[detector.countersQueue[target.systemId - 1]] = target;

 }

 else {

 detector.CarQueue[target.systemId - 1]

[detector.countersQueue[target.systemId - 1]] = target;

 detector.countersQueue[target.systemId - 1]++;

 }

 if (target.systemId != nodeArray[1].systemId){

 if (detector.countersQueue[target.systemId - 2] ==

 detector.MAX_CAR_ARRAY_IDEX - 1) {

 detector.rearrangeArray(0, target.systemId - 2,

 detector.countersQueue[target.systemId - 2],

 detector.CarQueue);

 detector.CarQueue[target.systemId - 2]

[detector.countersQueue[target.systemId - 2]] = target;

 }

 else {

 detector.CarQueue[target.systemId - 2]

[detector.countersQueue[target.systemId - 2]] = target;

 detector.countersQueue[target.systemId - 2]++;

188

 }

 }

 }

 }

 // if the target has been detected from node with system id 7

 if (target.systemId == nodeArray[7].systemId){

 if (target.direction == "unknown"){

 if (detector.countersQueue[target.systemId - 1] ==

 detector.MAX_CAR_ARRAY_IDEX - 1) {

 detector.rearrangeArray(0, target.systemId - 1,

 detector.countersQueue[target.systemId - 1],

 detector.CarQueue);

 detector.CarQueue[target.systemId - 1]

[detector.countersQueue[target.systemId - 1]] = target;

 }

 else {

 detector.CarQueue[target.systemId - 1]

[detector.countersQueue[target.systemId - 1]] = target;

 detector.countersQueue[target.systemId - 1]++;

 }

 if (detector.countersQueue[target.systemId - 2] ==

 detector.MAX_CAR_ARRAY_IDEX - 1) {

 detector.rearrangeArray(0, target.systemId - 2,

 detector.countersQueue[target.systemId - 2],

 detector.CarQueue);

 detector.CarQueue[target.systemId - 2]

[detector.countersQueue[target.systemId - 2]] = target;

 }

 else {

 detector.CarQueue[target.systemId - 2]

[detector.countersQueue[target.systemId - 2]] = target;

189

 detector.countersQueue[target.systemId - 2]++;

 }

 }

 }

 // call the motionDetector's sendCommand method to inform the camera

 detector.sendCommand(target.systemId, target.incomingObject,

 target.direction, target.speed, target.timeToCamera,

 target.speedHistory);

 }//End detectCar

}

/**

 * <p>Title: TRoadScenario</p>

 * <p>Description: This class is responsible to implement the algorithmic

 * process for the straight-road scenario by receiving the

 * data from the motionDetector class.

 * First based on the raw data and in the stored data it produces

 * the direction of the object, and then the speed.

 * Finally, it is responsible to inform the data structures of

 * the neighbor nodes to continue tracking the object.</p>

 * <p>Copyright: Copyright (c) 2005</p>

 * <p>Company: Naval Postgraduate School, Monterey, CA</p>

 * @author Vlasios Salatas

 * @version 1.0

 */

public class TRoadScenario {

 public TRoadScenario() {

190

}

 // Initialize a motionDetector object in order to be able to call the

 // proper methods

 private static motionDetector detector = new motionDetector();

 /**

 * Title: setDefaultDistances

 * Description: It takes the data related to the nodes physical characteristics

 * and place them in a array of node objects.

 * @param initialNodeArray

 * @param userInputs

 * @return

 */

 public node[] setDefaultDistances(node[] initialNodeArray, int[][] userInputs) {

 //set the distances in the array that holds the data related to nodes

 initialNodeArray[0].setPreDistance(userInputs[0][1]);

 initialNodeArray[0].setPostDistance(userInputs[0][2]);

 initialNodeArray[1].setPreDistance(userInputs[1][1]);

 initialNodeArray[1].setPostDistance(userInputs[1][2]);

 initialNodeArray[2].setPreDistance(userInputs[2][1]);

 initialNodeArray[2].setPostDistance(userInputs[2][2]);

 initialNodeArray[3].setPreDistance(userInputs[3][1]);

 initialNodeArray[3].setPostDistance(userInputs[3][2]);

 initialNodeArray[4].setPreDistance(userInputs[4][1]);

 initialNodeArray[4].setPostDistance(userInputs[4][2]);

 initialNodeArray[5].setPreDistance(userInputs[5][1]);

 initialNodeArray[5].setPostDistance(userInputs[5][2]);

 initialNodeArray[6].setPreDistance(userInputs[6][1]);

 initialNodeArray[6].setPostDistance(userInputs[6][2]);

 initialNodeArray[7].setPreDistance(userInputs[7][1]);

 initialNodeArray[7].setPostDistance(userInputs[7][2]);

 initialNodeArray[0].setDistanceToCamera(

191

 setTRSNodeDistanceToCamera(initialNodeArray[0].systemId, initialNodeArray));

 initialNodeArray[1].setDistanceToCamera(

 setTRSNodeDistanceToCamera(initialNodeArray[1].systemId, initialNodeArray));

 initialNodeArray[2].setDistanceToCamera(

 setTRSNodeDistanceToCamera(initialNodeArray[2].systemId, initialNodeArray));

 initialNodeArray[3].setDistanceToCamera(

 setTRSNodeDistanceToCamera(initialNodeArray[3].systemId, initialNodeArray));

 initialNodeArray[4].setDistanceToCamera(

 setTRSNodeDistanceToCamera(initialNodeArray[4].systemId, initialNodeArray));

 initialNodeArray[5].setDistanceToCamera(

 setTRSNodeDistanceToCamera(initialNodeArray[5].systemId, initialNodeArray));

 initialNodeArray[6].setDistanceToCamera(

 setTRSNodeDistanceToCamera(initialNodeArray[6].systemId, initialNodeArray));

 initialNodeArray[7].setDistanceToCamera(

 setTRSNodeDistanceToCamera(initialNodeArray[7].systemId, initialNodeArray));

 return initialNodeArray;

 }

 /**

 * Title: setTRSNodeDistanceToCamera

 * Description: It calculates the distance from the node to the

 * TSSRv3 camera-base station

 * @param systemId

 * @param initialNodeArray

 * @return

 */

 public int setTRSNodeDistanceToCamera(int systemId, node[] initialNodeArray) {

 int distanceToCamera = 0;

 if (systemId == 0) {

 distanceToCamera = initialNodeArray[0].postDistance +

 initialNodeArray[1].postDistance +

 initialNodeArray[2].postDistance +

 initialNodeArray[4].postDistance +

192

 initialNodeArray[5].postDistance +

 initialNodeArray[6].postDistance +

 initialNodeArray[7].distanceLastNodeCamera;

 }

 else if (systemId == 1) {

 distanceToCamera = initialNodeArray[1].postDistance +

 initialNodeArray[2].postDistance +

 initialNodeArray[4].postDistance +

 initialNodeArray[5].postDistance +

 initialNodeArray[6].postDistance +

 initialNodeArray[7].distanceLastNodeCamera;

 }

 else if (systemId == 2) {

 distanceToCamera = initialNodeArray[2].postDistance +

 initialNodeArray[4].postDistance +

 initialNodeArray[5].postDistance +

 initialNodeArray[6].postDistance +

 initialNodeArray[7].distanceLastNodeCamera;

 }

 else if (systemId == 3) {

 distanceToCamera = initialNodeArray[3].postDistance +

 initialNodeArray[2].postDistance +

 initialNodeArray[4].postDistance +

 initialNodeArray[5].postDistance +

 initialNodeArray[6].postDistance +

 initialNodeArray[7].distanceLastNodeCamera;

 }

 else if (systemId == 4) {

 distanceToCamera = initialNodeArray[4].postDistance +

 initialNodeArray[5].postDistance +

 initialNodeArray[6].postDistance +

 initialNodeArray[7].distanceLastNodeCamera;

 }

193

 else if (systemId == 5) {

 distanceToCamera = initialNodeArray[5].postDistance +

 initialNodeArray[6].postDistance +

 initialNodeArray[7].distanceLastNodeCamera;

 }

 else if (systemId == 6) {

 distanceToCamera = initialNodeArray[6].postDistance +

 initialNodeArray[7].distanceLastNodeCamera;

 }

 else if (systemId == 7) {

 distanceToCamera = initialNodeArray[7].distanceLastNodeCamera;

 }

 else {

 System.out.println(" Node Input Error ");

 }

 return distanceToCamera;

 }

 /**

 * Title: setDirection

 * Description: It implement the first part of the algorithm by producing the

 * object's direction based on the node id that returns the

 * detection and on the stored data in the node's data structure

 * @param sysId

 * @param quad

 * @return

 */

 public String setDirection(int sysId, int quad) {

 String direction = "unknown";

 if (detector.CarQueue[sysId][0] == null) {

 direction = "unknown";

194

 }

 else if ((sysId == 0 || sysId == 1 || sysId == 3)

 && sysId < detector.CarQueue[sysId][0].systemId) {

 if (detector.CarQueue[sysId][0].direction.startsWith("right", 8)) {

 direction = detector.CarQueue[sysId][0].direction;

 }

 direction = "right to left";

 }

 else if ((sysId == 0 || sysId == 1 || sysId == 3)

 && sysId > detector.CarQueue[sysId][0].systemId) {

 if (detector.CarQueue[sysId][0].direction.startsWith("left", 8)) {

 direction = detector.CarQueue[sysId][0].direction;

 }

 direction = "left to right";

 }

 else if (sysId == 2) {

 if (detector.CarQueue[sysId][0].systemId == 2) {

 if (quad == 2) {

 if (detector.CarQueue[sysId][0].quad == 1) {

 direction = "inbound right to left ";

 }

 else if (detector.CarQueue[sysId][0].quad == 2) {

 }

 }

 else if (quad == 1) {

 if (detector.CarQueue[sysId][0].quad == 1) {

 }

 else if (detector.CarQueue[sysId][0].quad == 2) {

 direction = "outbound left to right ";

 }

 }

195

 }

 else if (sysId > detector.CarQueue[sysId][0].systemId) {

 if (quad == 1) {

 direction = "left to right";

 }

 else if (quad == 2) {

 direction = "inbound left to right";

 }

 else {

 direction = "left to right";

 }

 }

 else if (detector.CarQueue[sysId][0].systemId == 3) {

 direction = "right to left";

 }

 else if (sysId < detector.CarQueue[sysId][0].systemId

 && detector.CarQueue[sysId][0].systemId != 3) {

 direction = "outbound";

 }

 }

 else if (sysId == 4 || sysId == 5 || sysId == 6 || sysId == 7

 && sysId > detector.CarQueue[sysId][0].systemId) {

 if (detector.CarQueue[sysId][0].direction.startsWith("inbound")) {

 direction = detector.CarQueue[sysId][0].direction;

 }

 else {

 direction = "inbound";

 }

 }

 else if (sysId == 4 || sysId == 5 || sysId == 6 || sysId == 7

 && sysId < detector.CarQueue[sysId][0].systemId) {

 direction = "outbound";

196

 }

 return direction;

 }

 /**

 * Title: detect

 * Description: It implement the second part of the algorithm.

 * By using the proper method's calls outputs the object's

 * direction, and speed and stored them in the target object

 * parameter.

 * Its main purpose it to keep the the FIFO uptadated. Thus,

 * by calling proper method's removes the old values. Aditioanlly

 * by evaluating the objects direction it updates the proper node's

 * data structures.

 *

 * The nodes topology that this scenario use based on the system id

 * is the following

 * The number represent the system id of the nodes

 *

 * -----------------1---3------------

 *

 *

 * ---0-----------------------| 2---------------------------------

 * | |

 * | |

 * | |

 * 4 |

 * | |

 * | |

 * | |

 * | 5

 * | |

 * | |

197

 * | |

 * 6 |

 * | |

 * | |

 * | |

 * | 7

 *

 * @param node

 */

 public void detect(motionDetector target, node[] nodeArray) {

 int distance = 0;

 // check if the stored data are too old

 if (((long) target.currentTime - detector.oldTime) >=

 detector.timeThreshold) {

 // if the data are too old the resetCarArraysAndCounters() method

 // reset the counters and empty the arrays

 detector.resetCarArraysAndCounters();

 }

 // place the curent system time to the oldTime variable

 // in order to check the next incoming message

 detector.oldTime = (long) target.currentTime;

 //Test code displays the stored thresholds in the command line window

 System.out.println("PirThr" + detector.irThr + "MagThr" +

 detector.magneticThr);

 // Call the setDirection to calculate the direction of the object

 target.direction = setDirection(target.systemId, target.quad);

 // check if the node's data structure has stored target objects

 // If it has it use them to calculate the object's speed

198

 if (detector.CarQueue[target.systemId][0] != null) {

 //checks the direction of the object to place

 // the proper distance in the speed computation

 // if the direction is "unknown" it use s the default distance

 // place the proper distance if the stored value is from the neighbor node

 if (target.direction.startsWith("left") ||

 target.direction.startsWith("inbound")

 &&

 (target.systemId - detector.CarQueue[target.systemId][0].systemId == 1)) {

 distance = nodeArray[target.systemId].preDistance;

 }

 else if (target.direction.startsWith("left") ||

 target.direction.startsWith("inbound")

 && (target.systemId == 4)

 && (detector.CarQueue[target.systemId][0].systemId == 2)) {

 distance = nodeArray[target.systemId].preDistance;

 }

 else if (target.direction.startsWith("left") ||

 target.direction.startsWith("inbound")

 && (target.systemId == 4)

 && (detector.CarQueue[target.systemId][0].systemId != 2)) {

 distance = nodeArray[target.systemId].preDistance

 + nodeArray[detector.CarQueue[target.systemId][0].systemId].postDistance;

 }

 // place the proper distance if the stored value is from the two node away

 else if (target.direction.startsWith("left") ||

 target.direction.startsWith("inbound") &&

 (target.systemId - detector.CarQueue[target.systemId][0].systemId != 1)

 && (target.systemId != 4)) {

 distance = nodeArray[target.systemId].preDistance +

 nodeArray[detector.CarQueue[target.systemId][0].systemId].postDistance;

199

 }

 // place the proper distance if the stored value is from the neighbor node

 else if (target.direction.startsWith("right") || target.direction.startsWith("outbound")

 && (target.systemId - detector.CarQueue[target.systemId][0].systemId == 1)) {

 distance = nodeArray[target.systemId].postDistance;

 }

 else if (target.direction.startsWith("right") ||

 target.direction.startsWith("outbound")

 && (target.systemId == 2)

 && (detector.CarQueue[target.systemId][0].systemId == 4)) {

 distance = nodeArray[target.systemId].postDistance;

 }

 else if (target.direction.startsWith("right") || target.direction.startsWith("outbound")

 && (target.systemId == 2)

 && (detector.CarQueue[target.systemId][0].systemId != 4)) {

 distance = nodeArray[target.systemId].postDistance +

 nodeArray[detector.CarQueue[target.systemId][0].systemId].preDistance;

 }

 // place the proper distance if the stored value is from the two node away

 else if (target.direction.startsWith("right") || target.direction.startsWith("outbound")

 && (target.systemId - detector.CarQueue[target.systemId][0].systemId != 1)) {

 distance = nodeArray[target.systemId].postDistance +

 nodeArray[detector.CarQueue[target.systemId][0].systemId].preDistance;

 }

 else {

 // do nothing use the default distance

 }

 // Calls the motionDetector's computeSpeed to calculate the object's speed

 // and the store the value in the target object

 target.speed = detector.computeSpeed(detector.CarQueue[target.systemId][0].

200

 currentTime, target.currentTime, distance);

 // Produses the speed history

 target.speedHistory = detector.CarQueue[target.systemId][0].speedHistory;

 target.speedHistory[target.systemId] = target.speed;

 // compute the time to be close to camera

 if (target.direction.startsWith("inbound")) {

 target.timeToCamera = detector.computeTimeToCamera(

 nodeArray[target.systemId].distanceToCamera, target.speed);

 }

 // It calls the motionDetector's removeRedundantEntry which

 // checks and removes the old and redundant data from the arrays

 // in order to avoid future confusions

 detector.removeRedundantEntry(
detector.CarQueue[target.systemId][0].seqNumber);

 }

 // The remaining prt of the method is responsible to store the above

 // prodused data in the proper node's data structure in order to infrom them

 // for the incoming object

 // if the target has been detected from node with system id 0

 if (target.systemId == nodeArray[0].systemId) {

 if (target.direction == "unknown") {

 // If the node's data structure is full remove the first entry

 // to free space then it place the new entry

 if (detector.countersQueue[target.systemId + 1] ==

 detector.MAX_CAR_ARRAY_IDEX - 1) {

 // Removes the first element in the array to leave space

 // by calling the motionDetector rearrangeArray method. Rearange the

 // array from the first element "0" to the current array counter value.

201

 // It implements FIFO

 detector.rearrangeArray(0, target.systemId + 1,

 detector.countersQueue[target.systemId + 1], detector.CarQueue);

 // Place the target object in the proper node array

 detector.CarQueue[target.systemId + 1]

[detector.countersQueue[target.systemId + 1]] = target;

 }

 // If the data structure is not full, it just places the new entry

 else {

 detector.CarQueue[target.systemId + 1]

[detector.countersQueue[target.systemId + 1]] = target;

 detector.countersQueue[target.systemId + 1]++;

 }

 }

 // Increases system's reliability by placing the detection

 // exept the next node into one more node, two nodes away in the row.

 // It uses the the static topology that the application has based on

 // the system id. Thus, the current node with the static system id, and

 // the figure provided in the beggining of this method explain which

 // nodes the current node has to inform.

 // Then it implemtents the same steps as in the above set of selections

 if (detector.countersQueue[target.systemId + 2] ==

 detector.MAX_CAR_ARRAY_IDEX - 1) {

 detector.rearrangeArray(0, target.systemId + 2,

 detector.countersQueue[target.systemId + 2], detector.CarQueue);

 detector.CarQueue[target.systemId + 2]

[detector.countersQueue[target.systemId + 2]] = target;

 }

 else {

 detector.CarQueue[target.systemId +

 2][detector.countersQueue[target.systemId + 2]] = target;

 detector.countersQueue[target.systemId + 2]++;

 }

202

 }

 // The remainder of the method checks the system id of the node that

 // returns the detection message, and the node's static topology

 // and based on the stored direction informs the proper data structures

 // following the steps that the above group of selection for the node with

 // system id 0 implements.

 // if the target has been detected from node with system id 2

 if (target.systemId == nodeArray[2].systemId) {

 if (target.direction.startsWith("inbound")) {

 // inform node with system id 4

 if (detector.countersQueue[target.systemId + 2] ==

 detector.MAX_CAR_ARRAY_IDEX - 1) {

 detector.rearrangeArray(0, target.systemId + 2,

 detector.countersQueue[target.systemId + 2], detector.CarQueue);

 detector.CarQueue[target.systemId + 2]

[detector.countersQueue[target.systemId + 2]] = target;

 }

 else {

 detector.CarQueue[target.systemId +

 2][detector.countersQueue[target.systemId + 2]] = target;

 detector.countersQueue[target.systemId + 2]++;

 }

 // it informa node with system id 5

 if (detector.countersQueue[target.systemId + 3] ==

 detector.MAX_CAR_ARRAY_IDEX - 1) {

 detector.rearrangeArray(0, target.systemId + 3,

 detector.countersQueue[target.systemId + 3], detector.CarQueue);

 detector.CarQueue[target.systemId + 3]

[detector.countersQueue[target.systemId + 3]] = target;

 }

203

 else {

 detector.CarQueue[target.systemId +

 3][detector.countersQueue[target.systemId + 3]] = target;

 detector.countersQueue[target.systemId + 3]++;

 }

 }

 if (target.direction == "outbound") {

 // inform node with system id 1

 if (detector.countersQueue[target.systemId - 1] ==

 detector.MAX_CAR_ARRAY_IDEX - 1) {

 detector.rearrangeArray(0, target.systemId - 1,

 detector.countersQueue[target.systemId - 1], detector.CarQueue);

 detector.CarQueue[target.systemId - 1]

[detector.countersQueue[target.systemId - 1]] = target;

 }

 else {

 detector.CarQueue[target.systemId - 1]

[detector.countersQueue[target.systemId - 1]] = target;

 detector.countersQueue[target.systemId - 1]++;

 }

 // informs node with system id 0

 if (detector.countersQueue[target.systemId - 2] ==

 detector.MAX_CAR_ARRAY_IDEX - 1) {

 detector.rearrangeArray(0, target.systemId - 2,

 detector.countersQueue[target.systemId - 2], detector.CarQueue);

 detector.CarQueue[target.systemId -

 2][detector.countersQueue[target.systemId - 2]] = target;

 }

 // it place the new entry

 else {

 detector.CarQueue[target.systemId -

204

 2][detector.countersQueue[target.systemId - 2]] = target;

 detector.countersQueue[target.systemId - 2]++;

 }

 // Inform node with system id 2 itself, because node with system id 2

 // uses two quarters

 if (target.quad == 1 || target.quad == 2) {

 if (detector.countersQueue[target.systemId] ==

 detector.MAX_CAR_ARRAY_IDEX - 1) {

 detector.rearrangeArray(0, target.systemId,

 detector.countersQueue[target.systemId], detector.CarQueue);

 detector.CarQueue[target.systemId]

 [detector.countersQueue[target. systemId]] = target;

 }

 else {

 detector.CarQueue[target.systemId]

[detector.countersQueue[target. systemId]] = target;

 detector.countersQueue[target.systemId]++;

 }

 }

 // it infroms node with system id 3

 else {

 if (detector.countersQueue[target.systemId + 1] ==

 detector.MAX_CAR_ARRAY_IDEX - 1) {

 detector.rearrangeArray(0, target.systemId + 1,

 detector.countersQueue[target.systemId + 1], detector.CarQueue);

 detector.CarQueue[target.systemId + 1]

[detector.countersQueue[target.systemId + 1]] = target;

 }

 else {

 detector.CarQueue[target.systemId + 1]

[detector.countersQueue[target.systemId + 1]] = target;

205

 detector.countersQueue[target.systemId + 1]++;

 }

 }

 }

 if (target.direction.startsWith("left")) {

 // it informs the next node

 if (detector.countersQueue[target.systemId + 1] ==

 detector.MAX_CAR_ARRAY_IDEX - 1) {

 detector.rearrangeArray(0, target.systemId + 1,

 detector.countersQueue[target.systemId + 1], detector.CarQueue);

 detector.CarQueue[target.systemId + 1]

 [detector.countersQueue[target.systemId + 1]] = target;

 }

 else {

 detector.CarQueue[target.systemId + 1]

[detector.countersQueue[target.systemId + 1]] = target;

 detector.countersQueue[target.systemId + 1]++;

 }

 }

 if (target.direction.startsWith("right")) {

 // Informs node with system id 2 itself

 if (target.quad == 1 || target.quad == 2) {

 if (detector.countersQueue[target.systemId] ==

 detector.MAX_CAR_ARRAY_IDEX - 1) {

 detector.rearrangeArray(0, target.systemId,

 detector.countersQueue[target.systemId], detector.CarQueue);

 detector.CarQueue[target.systemId]

[detector.countersQueue[target. systemId]] = target;

 }

 else {

 detector.CarQueue[target.systemId]

206

[detector.countersQueue[target. systemId]] = target;

 detector.countersQueue[target.systemId]++;

 }

 }

 // it infroms node with system id 4

 else {

 if (detector.countersQueue[target.systemId + 2] ==

 detector.MAX_CAR_ARRAY_IDEX - 1) {

 detector.rearrangeArray(0, target.systemId + 2,

 detector.countersQueue[target.systemId + 2], detector.CarQueue);

 detector.CarQueue[target.systemId + 2]

[detector.countersQueue[target.systemId + 2]] = target;

 }

 else {

 detector.CarQueue[target.systemId + 2]

[detector.countersQueue[target.systemId + 2]] = target;

 detector.countersQueue[target.systemId + 2]++;

 }

 }

 // inform node with system id 1

 if (detector.countersQueue[target.systemId - 1] ==

 detector.MAX_CAR_ARRAY_IDEX - 1) {

 detector.rearrangeArray(0, target.systemId - 1,

 detector.countersQueue[target.systemId - 1], detector.CarQueue);

 detector.CarQueue[target.systemId - 1]

 [detector.countersQueue[target.systemId - 1]] = target;

 }

 else {

 detector.CarQueue[target.systemId - 1]

[detector.countersQueue[target.systemId - 1]] = target;

 detector.countersQueue[target.systemId - 1]++;

207

 }

 // informs node with system id 0

 if (detector.countersQueue[target.systemId - 2] ==

 detector.MAX_CAR_ARRAY_IDEX - 1) {

 detector.rearrangeArray(0, target.systemId - 2,

 detector.countersQueue[target.systemId - 2], detector.CarQueue);

 detector.CarQueue[target.systemId - 2]

 [detector.countersQueue[target.systemId - 2]] = target;

 }

 else {

 detector.CarQueue[target.systemId - 2]

 [detector.countersQueue[target.systemId - 2]] = target;

 detector.countersQueue[target.systemId - 2]++;

 }

 }

 else if (target.direction == "unknown") {

 // Inform node with system id 2 itself

 if (target.quad == 1 || target.quad == 2) {

 if (detector.countersQueue[target.systemId] ==

 detector.MAX_CAR_ARRAY_IDEX - 1) {

 detector.rearrangeArray(0, target.systemId,

 detector.countersQueue[target.systemId], detector.CarQueue);

 detector.CarQueue[target.systemId]

[detector.countersQueue[target. systemId]] = target;

 }

 else {

 detector.CarQueue[target.systemId]

[detector.countersQueue[target.systemId]] = target;

 detector.countersQueue[target.systemId]++;

 }

 }

208

 // it place the entry in node with system id 3

 if (detector.countersQueue[target.systemId + 1] ==

 detector.MAX_CAR_ARRAY_IDEX - 1) {

 detector.rearrangeArray(0, target.systemId + 1,

 detector.countersQueue[target.systemId + 1], detector.CarQueue);

 detector.CarQueue[target.systemId + 1]

 [detector.countersQueue[target.systemId + 1]] = target;

 }

 else {

 detector.CarQueue[target.systemId + 1]

 [detector.countersQueue[target.systemId + 1]] = target;

 detector.countersQueue[target.systemId + 1]++;

 }

 // it place the entry in node with system id 1

 if (detector.countersQueue[target.systemId - 1] ==

 detector.MAX_CAR_ARRAY_IDEX - 1) {

 detector.rearrangeArray(0, target.systemId - 1,

 detector.countersQueue[target.systemId - 1], detector.CarQueue);

 detector.CarQueue[target.systemId - 1]

 [detector.countersQueue[target.systemId - 1]] = target;

 }

 else {

 detector.CarQueue[target.systemId - 1]

 [detector.countersQueue[target.systemId - 1]] = target;

 detector.countersQueue[target.systemId - 1]++;

 }

 // it place the entry in node with system id 4

 if (detector.countersQueue[target.systemId + 2] ==

 detector.MAX_CAR_ARRAY_IDEX - 1) {

 detector.rearrangeArray(0, target.systemId + 2,

209

 detector.countersQueue[target.systemId + 2], detector.CarQueue);

 detector.CarQueue[target.systemId + 2]

 [detector.countersQueue[target.systemId + 2]] = target;

 }

 else {

 detector.CarQueue[target.systemId + 2]

 [detector.countersQueue[target.systemId + 2]] = target;

 detector.countersQueue[target.systemId + 2]++;

 }

 // informs also node with system id 5

 if (detector.countersQueue[target.systemId + 3] ==

 detector.MAX_CAR_ARRAY_IDEX - 1) {

 detector.rearrangeArray(0, target.systemId + 3,

 detector.countersQueue[target.systemId + 3], detector.CarQueue);

 detector.CarQueue[target.systemId + 3]

 [detector.countersQueue[target.systemId + 3]] = target;

 }

 else {

 detector.CarQueue[target.systemId + 3]

 [detector.countersQueue[target.systemId + 3]] = target;

 detector.countersQueue[target.systemId + 3]++;

 }

 // informs node with system id 0

 if (detector.countersQueue[target.systemId - 2] ==

 detector.MAX_CAR_ARRAY_IDEX - 1) {

 detector.rearrangeArray(0, target.systemId - 2,

 detector.countersQueue[target.systemId - 2], detector.CarQueue);

 detector.CarQueue[target.systemId - 2]

 [detector.countersQueue[target.systemId - 2]] = target;

 }

 else {

210

 detector.CarQueue[target.systemId - 2]

 [detector.countersQueue[target.systemId - 2]] = target;

 detector.countersQueue[target.systemId - 2]++;

 }

 }

 }

 // if the target has been detected from node is not with system id 0, 2, 3, 7

 if (target.systemId != nodeArray[0].systemId

 && target.systemId != nodeArray[2].systemId

 && target.systemId != nodeArray[3].systemId

 && target.systemId != nodeArray[7].systemId) {

 if (target.direction.startsWith("inbound") ||

 target.direction.startsWith("left")) {

 // Inform's the next node

 if (detector.countersQueue[target.systemId + 1] ==

 detector.MAX_CAR_ARRAY_IDEX - 1) {

 detector.rearrangeArray(0, target.systemId + 1,

 detector.countersQueue[target.systemId + 1], detector.CarQueue);

 detector.CarQueue[target.systemId + 1]

 [detector.countersQueue[target.systemId + 1]] = target;

 }

 else {

 detector.CarQueue[target.systemId + 1]

 [detector.countersQueue[target.systemId + 1]] = target;

 detector.countersQueue[target.systemId + 1]++;

 }

 // The node with system id 1 in addition performs the following placements

 if (target.systemId == nodeArray[1].systemId) {

 // Informs node with system id 3

211

 if (detector.countersQueue[target.systemId + 2] ==

 detector.MAX_CAR_ARRAY_IDEX - 1) {

 detector.rearrangeArray(0, target.systemId + 2,

 detector.countersQueue[target.systemId + 2], detector.CarQueue);

 detector.CarQueue[target.systemId + 2]

 [detector.countersQueue[target.systemId + 2]] = target;

 }

 // it place the new entry

 else {

 detector.CarQueue[target.systemId + 2]

[detector.countersQueue[target.systemId + 2]] = target;

 detector.countersQueue[target.systemId + 2]++;

 }

 // informs node with system id 4

 if (detector.countersQueue[target.systemId + 3] ==

 detector.MAX_CAR_ARRAY_IDEX - 1) {

 detector.rearrangeArray(0, target.systemId + 3,

 detector.countersQueue[target.systemId + 3], detector.CarQueue);

 detector.CarQueue[target.systemId + 3]

[detector.countersQueue[target.systemId + 3]] = target;

 }

 else {

 detector.CarQueue[target.systemId + 3]

[detector.countersQueue[target.systemId + 3]] = target;

 detector.countersQueue[target.systemId + 3]++;

 }

 }

 // The nodes with system id 4, 5

 else if (target.systemId == nodeArray[4].systemId ||

 target.systemId == nodeArray[5].systemId) {

 // Informs the second node in the row

212

 if (detector.countersQueue[target.systemId + 2] ==

 detector.MAX_CAR_ARRAY_IDEX - 1) {

 detector.rearrangeArray(0, target.systemId + 2,

 detector.countersQueue[target.systemId + 2], detector.CarQueue);

 detector.CarQueue[target.systemId + 2]

[detector.countersQueue[target.systemId + 2]] = target;

 }

 else {

 detector.CarQueue[target.systemId +

 2][detector.countersQueue[target.systemId + 2]] = target;

 detector.countersQueue[target.systemId + 2]++;

 }

 }

 }

 else if (target.direction.startsWith("outbound") ||

 target.direction.startsWith("right")) {

 // Informs the next node

 if (detector.countersQueue[target.systemId - 1] ==

 detector.MAX_CAR_ARRAY_IDEX - 1) {

 detector.rearrangeArray(0, target.systemId - 1,

 detector.countersQueue[target.systemId - 1], detector.CarQueue);

 detector.CarQueue[target.systemId - 1]

[detector.countersQueue[target.systemId - 1]] = target;

 }

 else {

 detector.CarQueue[target.systemId - 1]

 [detector.countersQueue[target.systemId - 1]] = target;

 detector.countersQueue[target.systemId - 1]++;

 }

 // The node with system id 4 performs in addition the following

 if (target.systemId == nodeArray[4].systemId) {

213

 // Informs the node with system id 2

 if (detector.countersQueue[target.systemId - 2] ==

 detector.MAX_CAR_ARRAY_IDEX - 1) {

 detector.rearrangeArray(0, target.systemId - 2,

 detector.countersQueue[target.systemId - 2], detector.CarQueue);

 detector.CarQueue[target.systemId - 2]

 [detector.countersQueue[target.systemId - 2]] = target;

 }

 else {

 detector.CarQueue[target.systemId - 2]

 [detector.countersQueue[target.systemId - 2]] = target;

 detector.countersQueue[target.systemId - 2]++;

 }

 }

 // The node with system id 6 performs in addition the following

 if (target.systemId == nodeArray[6].systemId) {

 // informs node with system id 4

 if (detector.countersQueue[target.systemId - 2] ==

 detector.MAX_CAR_ARRAY_IDEX - 1) {

 detector.rearrangeArray(0, target.systemId - 2,

 detector.countersQueue[target.systemId - 2], detector.CarQueue);

 detector.CarQueue[target.systemId - 2]

[detector.countersQueue[target.systemId - 2]] = target;

 }

 else {

 detector.CarQueue[target.systemId - 2]

[detector.countersQueue[target.systemId - 2]] = target;

 detector.countersQueue[target.systemId - 2]++;

 }

 }

 // The node with system id 4, 5 performs also the following

214

 if (target.systemId == nodeArray[5].systemId ||

 target.systemId == nodeArray[4].systemId) {

 // node with system id 5 informs node system id 2 and node with system id

 // 4 has already inform node with system id 2 and 3

 // and now informs node with system id 1

 if (detector.countersQueue[target.systemId - 3] ==

 detector.MAX_CAR_ARRAY_IDEX - 1) {

 detector.rearrangeArray(0, target.systemId - 3,

 detector.countersQueue[target.systemId - 3], detector.CarQueue);

 detector.CarQueue[target.systemId - 2]

[detector.countersQueue[target.systemId - 3]] = target;

 }

 else {

 detector.CarQueue[target.systemId - 3]

[detector.countersQueue[target.systemId - 3]] = target;

 detector.countersQueue[target.systemId - 3]++;

 }

 }

 }

 else if (target.direction == "unknown") {

 // Inform the next node

 if (detector.countersQueue[target.systemId + 1] ==

 detector.MAX_CAR_ARRAY_IDEX - 1) {

 detector.rearrangeArray(0, target.systemId + 1,

 detector.countersQueue[target.systemId + 1], detector.CarQueue);

 detector.CarQueue[target.systemId + 1]

[detector.countersQueue[target.systemId + 1]] = target;

 }

 else {

 detector.CarQueue[target.systemId + 1]

[detector.countersQueue[target.systemId + 1]] = target;

 detector.countersQueue[target.systemId + 1]++;

215

 }

 // The node with system id 1 it also performs the following

 if (target.systemId == nodeArray[1].systemId) {

 // informs node with system id 3

 if (detector.countersQueue[target.systemId + 2] ==

 detector.MAX_CAR_ARRAY_IDEX - 1) {

 detector.rearrangeArray(0, target.systemId + 2,

 detector.countersQueue[target.systemId + 2], detector.CarQueue);

 detector.CarQueue[target.systemId + 2]

[detector.countersQueue[target.systemId + 2]] = target;

 }

 else {

 detector.CarQueue[target.systemId + 2]

[detector.countersQueue[target.systemId + 2]] = target;

 detector.countersQueue[target.systemId + 2]++;

 }

 // informs node with system id 4

 if (detector.countersQueue[target.systemId + 3] ==

 detector.MAX_CAR_ARRAY_IDEX - 1) {

 detector.rearrangeArray(0, target.systemId + 3,

 detector.countersQueue[target.systemId + 3], detector.CarQueue);

 detector.CarQueue[target.systemId + 3]

[detector.countersQueue[target.systemId + 3]] = target;

 }

 else {

 detector.CarQueue[target.systemId + 3]

[detector.countersQueue[target.systemId + 3]] = target;

 detector.countersQueue[target.systemId + 3]++;

 }

 }

 // The nodes with system id 4, 5 it also performs the following

216

 else if (target.systemId == nodeArray[4].systemId ||

 target.systemId == nodeArray[5].systemId) {

 // exept the above next node into one more node two nodes in the row

 if (detector.countersQueue[target.systemId + 2] ==

 detector.MAX_CAR_ARRAY_IDEX - 1) {

 detector.rearrangeArray(0, target.systemId + 2,

 detector.countersQueue[target.systemId + 2], detector.CarQueue);

 detector.CarQueue[target.systemId + 2]

[detector.countersQueue[target.systemId + 2]] = target;

 }

 else {

 detector.CarQueue[target.systemId + 2]

[detector.countersQueue[target.systemId + 2]] = target;

 detector.countersQueue[target.systemId + 2]++;

 }

 }

 // Inform the next node

 if (detector.countersQueue[target.systemId - 1] ==

 detector.MAX_CAR_ARRAY_IDEX - 1) {

 detector.rearrangeArray(0, target.systemId - 1,

 detector.countersQueue[target.systemId - 1], detector.CarQueue);

 detector.CarQueue[target.systemId - 1]

[detector.countersQueue[target.systemId - 1]] = target;

 }

 else {

 detector.CarQueue[target.systemId - 1]

 [detector.countersQueue[target.systemId - 1]] = target;

 detector.countersQueue[target.systemId - 1]++;

 }

 // The nodes with system id 4 it also performs the following

 if (target.systemId == nodeArray[4].systemId) {

217

 // Informs the node with system id 2

 if (detector.countersQueue[target.systemId - 2] ==

 detector.MAX_CAR_ARRAY_IDEX - 1) {

 detector.rearrangeArray(0, target.systemId - 2,

 detector.countersQueue[target.systemId - 2], detector.CarQueue);

 detector.CarQueue[target.systemId - 2]

 [detector.countersQueue[target.systemId - 2]] = target;

 }

 else {

 detector.CarQueue[target.systemId - 2]

 [detector.countersQueue[target.systemId - 2]] = target;

 detector.countersQueue[target.systemId - 2]++;

 }

 }

 // The nodes with system id 6 it also performs the following

 if (target.systemId == nodeArray[6].systemId) {

 // informs node with system id 4

 if (detector.countersQueue[target.systemId - 2] ==

 detector.MAX_CAR_ARRAY_IDEX - 1) {

 detector.rearrangeArray(0, target.systemId - 2,

 detector.countersQueue[target.systemId - 2], detector.CarQueue);

 detector.CarQueue[target.systemId - 2]

[detector.countersQueue[target.systemId - 2]] = target;

 }

 else {

 detector.CarQueue[target.systemId - 2]

[detector.countersQueue[target.systemId - 2]] = target;

 detector.countersQueue[target.systemId - 2]++;

 }

 }

 // The nodes with system id 4, 5 it also performs the following

218

 if (target.systemId == nodeArray[5].systemId ||

 target.systemId == nodeArray[4].systemId) {

 // exept the above next node into one more node two nodes in the row

 // node with system id 5 informs node system id 2 and node with system id

 // 4 has already inform node with system id 2 and 3

 // and now informs node with system id 1

 if (detector.countersQueue[target.systemId - 3] ==

 detector.MAX_CAR_ARRAY_IDEX - 1) {

 detector.rearrangeArray(0, target.systemId - 3,

 detector.countersQueue[target.systemId - 3], detector.CarQueue);

 detector.CarQueue[target.systemId - 2]

[detector.countersQueue[target.systemId - 3]] = target;

 }

 else {

 detector.CarQueue[target.systemId - 3]

[detector.countersQueue[target.systemId - 3]] = target;

 detector.countersQueue[target.systemId - 3]++;

 }

 }

 }

 }

 // if the target has been detected from node with system id 7 or 3

 if (target.systemId == nodeArray[7].systemId ||

 target.systemId == nodeArray[3].systemId) {

 if (target.direction == "unknown") {

 // Informs the next node

 if (detector.countersQueue[target.systemId - 1] ==

 detector.MAX_CAR_ARRAY_IDEX - 1) {

 detector.rearrangeArray(0, target.systemId - 1,

 detector.countersQueue[target.systemId - 1], detector.CarQueue);

 detector.CarQueue[target.systemId - 1]

[detector.countersQueue[target.systemId - 1]] = target;

219

 }

 else {

 detector.CarQueue[target.systemId - 1]

[detector.countersQueue[target.systemId - 1]] = target;

 detector.countersQueue[target.systemId - 1]++;

 }

 // informs nodes two node away

 if (detector.countersQueue[target.systemId - 2] ==

 detector.MAX_CAR_ARRAY_IDEX - 1) {

 detector.rearrangeArray(0, target.systemId - 2,

 detector.countersQueue[target.systemId - 2], detector.CarQueue);

 detector.CarQueue[target.systemId - 2]

[detector.countersQueue[target.systemId - 2]] = target;

 }

 else {

 detector.CarQueue[target.systemId - 2]

[detector.countersQueue[target.systemId - 2]] = target;

 detector.countersQueue[target.systemId - 2]++;

 }

 }

 }

 // call the motionDetector's sendCommand method to inform the camera

 detector.sendCommand(target.systemId, target.incomingObject,

 target.direction, target.speed, target.timeToCamera,

 target.speedHistory);

 } //End detectCar

}

220

/**

 * <p>Title: crossroadsScenario</p>

 * <p>Description: This class is responsible to implement the algorithmic

 * process for the straight-road scenario by receiving the

 * data from the motionDetector class.

 * First based on the raw data and in the stored data it produces

 * the direction of the object, and then the speed.

 * Finally, it is responsible to inform the data structures of

 * the neighbor nodes to continue tracking the object.</p>

 * <p>Copyright: Copyright (c) 2005</p>

 * <p>Company: Naval Postgraduate School, Monterey, CA</p>

 * @author Vlasios Salatas

 * @version 1.0

 */

public class crossroadsScenario {

 public crossroadsScenario() {

 }

 // Initialize a motionDetector object in order to be able to call the

 // proper methods

 private static motionDetector detector = new motionDetector();

 /**

 * Title: setDefaultDistances

 * Description: It takes the data related to the nodes physical characteristics

 * and place them in a array of node objects.

 * @param initialNodeArray

 * @param userInputs

 * @return

 */

 public node[] setDefaultDistances(node[] initialNodeArray, int[][] userInputs){

221

 //set the distances in the array that holds the data related to nodes

 initialNodeArray[0].setPreDistance(userInputs[0][1]);

 initialNodeArray[0].setPostDistance(userInputs[0][2]);

 initialNodeArray[1].setPreDistance(userInputs[1][1]);

 initialNodeArray[1].setPostDistance(userInputs[1][2]);

 initialNodeArray[2].setPreDistance(userInputs[2][1]);

 initialNodeArray[2].setPostDistance(userInputs[2][2]);

 initialNodeArray[3].setPreDistance(userInputs[3][1]);

 initialNodeArray[3].setPostDistance(userInputs[3][2]);

 initialNodeArray[4].setPreDistance(userInputs[4][1]);

 initialNodeArray[4].setPostDistance(userInputs[4][2]);

 initialNodeArray[5].setPreDistance(userInputs[5][1]);

 initialNodeArray[5].setPostDistance(userInputs[5][2]);

 initialNodeArray[6].setPreDistance(userInputs[6][1]);

 initialNodeArray[6].setPostDistance(userInputs[6][2]);

 initialNodeArray[7].setPreDistance(userInputs[7][1]);

 initialNodeArray[7].setPostDistance(userInputs[7][2]);

 initialNodeArray[0].setDistanceToCamera(

 setCRNodeDistanceToCamera(initialNodeArray[0].systemId, initialNodeArray));

 initialNodeArray[1].setDistanceToCamera(

 setCRNodeDistanceToCamera(initialNodeArray[1].systemId, initialNodeArray));

 initialNodeArray[2].setDistanceToCamera(

 setCRNodeDistanceToCamera(initialNodeArray[2].systemId, initialNodeArray));

 initialNodeArray[3].setDistanceToCamera(

 setCRNodeDistanceToCamera(initialNodeArray[3].systemId, initialNodeArray));

 initialNodeArray[4].setDistanceToCamera(

 setCRNodeDistanceToCamera(initialNodeArray[4].systemId, initialNodeArray));

 initialNodeArray[5].setDistanceToCamera(

 setCRNodeDistanceToCamera(initialNodeArray[5].systemId, initialNodeArray));

 initialNodeArray[6].setDistanceToCamera(

 setCRNodeDistanceToCamera(initialNodeArray[6].systemId, initialNodeArray));

222

 initialNodeArray[7].setDistanceToCamera(

 setCRNodeDistanceToCamera(initialNodeArray[7].systemId, initialNodeArray));

 return initialNodeArray;

 }

 /**

 * Title: setTRSNodeDistanceToCamera

 * Description: It calculates the distance from the node to the

 * TSSRv3 camera-base station

 * @param systemId

 * @param initialNodeArray

 * @return

 */

 public int setCRNodeDistanceToCamera(int systemId, node[] initialNodeArray) {

 int distanceToCamera = 0;

 if (systemId == 0) {

 distanceToCamera = initialNodeArray[0].postDistance +

 initialNodeArray[1].postDistance +

 initialNodeArray[4].postDistance +

 initialNodeArray[5].postDistance +

 initialNodeArray[6].postDistance +

 initialNodeArray[7].distanceLastNodeCamera;

 }

 else if (systemId == 1) {

 distanceToCamera = initialNodeArray[1].postDistance +

 initialNodeArray[4].postDistance +

 initialNodeArray[5].postDistance +

 initialNodeArray[6].postDistance +

 initialNodeArray[7].distanceLastNodeCamera;

 }

 else if (systemId == 2) {

 distanceToCamera = initialNodeArray[2].postDistance +

 initialNodeArray[1].postDistance +

223

 initialNodeArray[4].postDistance +

 initialNodeArray[5].postDistance +

 initialNodeArray[6].postDistance +

 initialNodeArray[7].distanceLastNodeCamera;

 }

 else if (systemId == 3) {

 distanceToCamera = initialNodeArray[3].postDistance +

 initialNodeArray[4].postDistance +

 initialNodeArray[5].postDistance +

 initialNodeArray[6].postDistance +

 initialNodeArray[7].distanceLastNodeCamera;

 }

 else if (systemId == 4) {

 distanceToCamera = initialNodeArray[4].postDistance +

 initialNodeArray[5].postDistance +

 initialNodeArray[6].postDistance +

 initialNodeArray[7].distanceLastNodeCamera;

 }

 else if (systemId == 5) {

 distanceToCamera = initialNodeArray[5].postDistance +

 initialNodeArray[6].postDistance +

 initialNodeArray[7].distanceLastNodeCamera;

 }

 else if (systemId == 6) {

 distanceToCamera = initialNodeArray[6].postDistance +

 initialNodeArray[7].distanceLastNodeCamera;

 }

 else if (systemId == 7) {

 distanceToCamera = initialNodeArray[7].distanceLastNodeCamera;

 }

 else {

 System.out.println(" Node Input Error ");

 }

224

 return distanceToCamera;

 }

 /**

 * Title: setDirection

 * Description: It implement the first part of the algorithm by producing the

 * object's direction based on the node id that returns the

 * detection and on the stored data in the node's data structure

 * @param sysId

 * @param quad

 * @return

 */

 public String setDirection(int sysId, int quad) {

 String direction = "unknown";

 // if the target is new it is characterized as unknown

 if (detector.CarQueue[sysId][0] == null) {

 direction = "unknown";

 }

 // the following set of selections related to the nodes around the crossing

 else if (sysId == 0 || sysId == 1 || sysId == 2 || sysId == 3 || sysId == 4) {

 switch (sysId) {

 //case for node with system id 0

 case 0: {

 // if the stored direction is unknown

 if (detector.CarQueue[sysId][0].direction == "unknown") {

 if (detector.CarQueue[sysId][0].systemId == 2) {

 direction = "north south to left";

 }

 else {

 direction = "right to left";

 }

225

 }

 // if the target came from the rest of the system and

 // it has already been detected

 else if (sysId < detector.CarQueue[sysId][0].systemId) {

 if ((detector.CarQueue[sysId][0].direction.startsWith("right"))

 || (detector.CarQueue[sysId][0].direction.endsWith("right"))) {

 direction = detector.CarQueue[sysId][0].direction;

 }

 else if (! ((detector.CarQueue[sysId][0].direction.startsWith("right")) ||

 (detector.CarQueue[sysId][0].direction.endsWith("right")))) {

 direction = detector.CarQueue[sysId][0].direction.concat(" left");

 }

 else {

 direction = "right to left";

 }

 }

 }

 break;

 //case for node with system id 1

 case 1: {

 //check if the stored data is from the same node with different quad

 if (sysId == detector.CarQueue[sysId][0].systemId) {

 if (quad == 1 && detector.CarQueue[sysId][0].quad == 2) {

 direction = "left to right north";

 }

 else if (quad == 2 && detector.CarQueue[sysId][0].quad == 1) {

 direction = "north to south left";

 }

 }

 // if the target comes from the node with system id 0

 else if (sysId > detector.CarQueue[sysId][0].systemId) {

226

 direction = "left to right";

 }

 // if the target comes from the rest of the nodes

 else if (sysId < detector.CarQueue[sysId][0].systemId) {

 // if it comes from the node with system id 2

 if (detector.CarQueue[sysId][0].systemId == 2) {

 direction = "north to south";

 }

 else if (detector.CarQueue[sysId][0].systemId == 4

 || detector.CarQueue[sysId][0].systemId == 3) {

 if (quad == 1) {

 if (detector.CarQueue[sysId][0].quad == 1) {

 direction = "right to left north";

 }

 else if (detector.CarQueue[sysId][0].quad == 2) {

 direction = "outbound south to north";

 }

 }

 else if (quad == 2) {

 if (detector.CarQueue[sysId][0].quad == 1) {

 direction = "right to left";

 }

 else if (detector.CarQueue[sysId][0].quad == 2) {

 direction = "outbound south to north left";

 }

 }

 }

 // if the stored target has already valid direction

 else if (detector.CarQueue[sysId][0].direction.startsWith("right")

 || detector.CarQueue[sysId][0].direction.endsWith("right")) {

 direction = detector.CarQueue[sysId][0].direction;

 }

 // if the stored target has already valid direction

227

 else if (detector.CarQueue[sysId][0].direction.startsWith(

 "outbound")) {

 direction = detector.CarQueue[sysId][0].direction.concat(" left");

 }

 else if (detector.CarQueue[sysId][0].systemId == 3) {

 direction = "right to left";

 }

 else if (! ((detector.CarQueue[sysId][0].systemId == 3)

 || (detector.CarQueue[sysId][0].systemId == 4))) {

 if (quad == 1) {

 direction = "outbound south to north";

 }

 else if (quad == 2) {

 direction = "outbound south to north left";

 }

 }

 }

 } // end case 1

 break;

 case 2: {

 if (detector.CarQueue[sysId][0].direction == "unknown") {

 if (detector.CarQueue[sysId][0].systemId == 0) {

 direction = "left south to north";

 }

 else if (detector.CarQueue[sysId][0].systemId == 3) {

 direction = "right south to north";

 }

 else {

 direction = "south to north";

 }

 }

 else {

228

 if (sysId > detector.CarQueue[sysId][0].systemId) {

 if ((detector.CarQueue[sysId][0].direction.startsWith("left"))

 || (detector.CarQueue[sysId][0].direction.startsWith("right"))) {

 direction = detector.CarQueue[sysId][0].direction.concat(

 " north");

 }

 }

 else if (sysId < detector.CarQueue[sysId][0].systemId) {

 if (detector.CarQueue[sysId][0].direction.startsWith("right")) {

 direction = detector.CarQueue[sysId][0].direction.concat(

 " north");

 }

 else if (detector.CarQueue[sysId][0].direction.startsWith(

 "outbound")) {

 direction = detector.CarQueue[sysId][0].direction;

 }

 }

 }

 } // end case 2

 break;

 case 3: {

 if (detector.CarQueue[sysId][0].direction == "unknown") {

 if (sysId < detector.CarQueue[sysId][0].systemId

 && (! (detector.CarQueue[sysId][0].systemId == 4

 && detector.CarQueue[sysId][0].quad == 1))) {

 direction = "outbound left to right";

 }

 else {

 direction = "left to right";

 }

 }

 else {

229

 if ((detector.CarQueue[sysId][0].direction.startsWith("left"))

 || (detector.CarQueue[sysId][0].direction.endsWith("left"))) {

 direction = detector.CarQueue[sysId][0].direction;

 }

 else {

 direction = detector.CarQueue[sysId][0].direction.concat(" left");

 }

 }

 } // end case 3

 break;

 case 4: {

 //check if the stored data is from the same node with different quad

 if (sysId == detector.CarQueue[sysId][0].systemId) {

 if (quad == 2 && detector.CarQueue[sysId][0].quad == 1) {

 direction = "inbound right to left south";

 }

 else if (quad == 1 && detector.CarQueue[sysId][0].quad == 2) {

 direction = "outbound south to north right";

 }

 }

 else if (sysId > detector.CarQueue[sysId][0].systemId) {

 if (detector.CarQueue[sysId][0].direction == "unknown") {

 if (quad == 1) {

 if (detector.CarQueue[sysId][0].systemId == 3) {

 direction = "right to left";

 }

 else if (detector.CarQueue[sysId][0].systemId == 0) {

 direction = "left to right";

 }

 else if (detector.CarQueue[sysId][0].systemId == 1) {

 if (detector.CarQueue[sysId][0].quad == 2) {

 direction = "left to right";

230

 }

 else if (detector.CarQueue[sysId][0].quad == 1) {

 direction = "north to south right";

 }

 }

 else {

 direction = "north to south right";

 }

 }

 if (quad == 2) {

 if (detector.CarQueue[sysId][0].systemId == 3) {

 direction = "inbound right to left";

 }

 else if (detector.CarQueue[sysId][0].systemId == 0) {

 direction = "inbound left to right";

 }

 else if (detector.CarQueue[sysId][0].systemId == 1) {

 if (detector.CarQueue[sysId][0].quad == 2) {

 direction = "inbound left to right";

 }

 else if (detector.CarQueue[sysId][0].quad == 1) {

 direction = "inbound north to south";

 }

 }

 else {

 direction = "inbound north to south";

 }

 }

 }

 else {

 direction = "inbound ";

 direction.concat(detector.CarQueue[sysId][0].direction);

231

 }

 }

 if (sysId < detector.CarQueue[sysId][0].systemId) {

 if (detector.CarQueue[sysId][0].direction == "unknown") {

 if (quad == 1) {

 direction = "outbound south to north left";

 }

 else {

 direction = "outbound south to north";

 }

 }

 else {

 direction = detector.CarQueue[sysId][0].direction;

 }

 }

 } // end case 4

 break;

 } // end switch

 }

 else if (sysId == 5 || sysId == 6 || sysId == 7) {

 if (sysId > detector.CarQueue[sysId][0].systemId) {

 if (detector.CarQueue[sysId][0].direction == "unknown") {

 direction = "inbound north to south";

 }

 else if (detector.CarQueue[sysId][0].direction.startsWith("inbound")) {

 direction = detector.CarQueue[sysId][0].direction;

 }

 else if (!detector.CarQueue[sysId][0].direction.startsWith("inbound")) {

 direction = "inbound ";

 direction.concat(detector.CarQueue[sysId][0].direction);

 }

232

 }

 if (sysId < detector.CarQueue[sysId][0].systemId) {

 if (detector.CarQueue[sysId][0].direction == "unknown") {

 direction = "outbound south to north";

 }

 else {

 direction = detector.CarQueue[sysId][0].direction;

 }

 }

 }

 return direction;

 }

 /**

 * Title: detect

 * Description: It implement the second part of the algorithm.

 * By using the proper method's calls outputs the object's

 * direction, and speed and stored them in the target object

 * parameter.

 * Its main purpose it to keep the the FIFO uptadated. Thus,

 * by calling proper method's removes the old values. Aditioanlly

 * by evaluating the objects direction it updates the proper node's

 * data structures.

 *

 * The nodes topology that this scenario use based on the system id

 * is the following

 * The number represent the system id of the nodes

 *

 *

 * | |

 * | |

 * | 2

 * | |

233

 * | |

 * | |

 * | |

 * -----------------------------1 |----------------3------------------

 *

 *

 * -----------0-----------------| 4---------------------------------

 * | |

 * | |

 * | |

 * | |

 * 5 |

 * | |

 * | |

 * | |

 * | |

 * | 6

 * | |

 * | |

 * | |

 * | |

 * 7 |

 *

 * @param node

 */

 public void detect(motionDetector target, node[] nodeArray) {

 int distance = 0;

 // check if the stored data are too old

 if (((long) target.currentTime - detector.oldTime) >=

 detector.timeThreshold) {

 // if the data are too old the resetCarArraysAndCounters() method

234

 // reset the counters and empty the arrays

 detector.resetCarArraysAndCounters();

 }

 // place the curent system time to the oldTime variable

 // in order to check the next incoming message

 detector.oldTime = (long) target.currentTime;

 //Test code displays the stored thresholds in the command line window

 System.out.println("PirThr" + detector.irThr + "MagThr" +

 detector.magneticThr);

 // Call the setDirection to calculate the direction of the object

 target.direction = setDirection(target.systemId, target.quad);

 // check if the node's data structure has stored target objects

 // If it has it use them to calculate the object's speed

 if (detector.CarQueue[target.systemId][0] != null) {

 //checks the direction of the object to place

 // the proper distance in the speed computation

 // if the direction is "unknown" it use s the default distance

 if (target.direction.startsWith("left")

 || target.direction.startsWith("inbound")

 || target.direction.startsWith("north")) {

 // if the stored data is from just the next node

 if ((target.systemId - detector.CarQueue[target.systemId][0].systemId == 1)

 || (detector.CarQueue[target.systemId][0].systemId - target.systemId == 1)) {

 distance = nodeArray[target.systemId].preDistance;

 }

 // if the stored data is from the node two steps away

 else if (! ((target.systemId - detector.CarQueue[target.systemId][0].systemId == 1) ||

 (detector.CarQueue[target.systemId][0].systemId - target.systemId == 1))) {

235

 distance = nodeArray[target.systemId].preDistance +

 nodeArray[detector.CarQueue[target.systemId][0].systemId].postDistance;

 }

 }

 else if (target.direction.startsWith("right") || target.direction.startsWith("outbound")

 || target.direction.startsWith("south")) {

 // if the stored data is from just the next node

 if ((target.systemId - detector.CarQueue[target.systemId][0].systemId == 1) ||

 (detector.CarQueue[target.systemId][0].systemId - target.systemId == 1)) {

 distance = nodeArray[target.systemId].postDistance;

 }

 // if the stored data is from the node two steps away

 else if (! ((target.systemId - detector.CarQueue[target.systemId][0].systemId == 1) ||

 (detector.CarQueue[target.systemId][0].systemId - target.systemId == 1))) {

 distance = nodeArray[target.systemId].postDistance +

 nodeArray[detector.CarQueue[target.systemId][0].systemId].preDistance;

 }

 }

 else {

 // do nothing use the default distance

 }

 // Calls the motionDetector's computeSpeed to calculate the object's speed

 // and the store the value in the target object

 target.speed = detector.computeSpeed(detector.CarQueue[target.systemId][0].

 currentTime, target.currentTime, distance);

 // Produses the speed history

 target.speedHistory = detector.CarQueue[target.systemId][0].speedHistory;

 target.speedHistory[target.systemId] = target.speed;

 // compute the time to be close to camera

 if (target.direction.startsWith("inbound")) {

236

 target.timeToCamera = detector.computeTimeToCamera(

 nodeArray[target.systemId].distanceToCamera, target.speed);

 }

 // It calls the motionDetector's removeRedundantEntry which

 // checks and removes the old and redundant data from the arrays

 // in order to avoid future confusions

 detector.removeRedundantEntry(

 detector.CarQueue[target.systemId][0].seqNumber);

 }

 // The remaining prt of the method is responsible to store the above

 // prodused data in the proper node's data structure in order to infrom them

 // for the incoming object

 switch (target.systemId) {

 // if the target has been detected from node with system id 0

 case 0: {

 if (target.direction == "unknown") {

 // If the node's data structure is full remove the first entry

 // to free space then it place the new entry

 if (detector.countersQueue[target.systemId + 1] ==

 detector.MAX_CAR_ARRAY_IDEX - 1) {

 // Removes the first element in the array to leave space

 // by calling the motionDetector rearrangeArray method. Rearange the

 // array from the first element "0" to the current array counter value.

 // It implements FIFO

 detector.rearrangeArray(0, target.systemId + 1,

 detector.countersQueue[target.systemId + 1], detector.CarQueue);

 // Place the target object in the proper node array

 detector.CarQueue[target.systemId + 1]

237

 if (detector.countersQueue[target.systemId + 2] ==

 detector.MAX_CAR_ARRAY_IDEX - 1) {

 detector.rearrangeArray(0, target.systemId + 2,

 detector.countersQueue[target.systemId + 2], detector.CarQueue);

 detector.CarQueue[target.systemId + 2]

[detector.countersQueue[target.systemId + 2]] = target;

 }

 else {

 detector.CarQueue[target.systemId + 2]

 [detector.countersQueue[target.systemId + 2]] = target;

 detector.countersQueue[target.systemId + 2]++;

 }

 // informs node with system id 4

 if (detector.countersQueue[target.systemId + 4] ==

[detector.countersQueue[target.systemId + 1]] = target;

 }

 // If the data structure is not full, it just places the new entry

 else {

 detector.CarQueue[target.systemId + 1]

[detector.countersQueue[target.systemId + 1]] = target;

 detector.countersQueue[target.systemId + 1]++;

 }

 // Increases system's reliability by placing the detection

 // exept the next node into one more node, two nodes away in the row.

 // It uses the the static topology that the application has based on

 // the system id. Thus, the current node with the static system id, and

 // the figure provided in the beggining of this method explain which

 // nodes the current node has to inform.

 // Then it implemtents the same steps as in the above set of selections

 // informs node with system id 2

238

 detector.MAX_CAR_ARRAY_IDEX - 1) {

 detector.rearrangeArray(0, target.systemId + 4,

 detector.countersQueue[target.systemId + 4], detector.CarQueue);

 detector.CarQueue[target.systemId + 4]

[detector.countersQueue[target.systemId + 4]] = target;

 }

 else {

 detector.CarQueue[target.systemId + 4]

[detector.countersQueue[target.systemId + 4]] = target;

 detector.countersQueue[target.systemId + 4]++;

 }

 } // End target.direction == "unknown"

 } // End case nodeArray[0].systemId

 break;

 // The remainder of the method checks the system id of the node that

 // returns the detection message, and the node's static topology

 // and based on the stored direction informs the proper data structures

 // following the steps that the above group of selection for the node with

 // system id 0 implements.

 // if the target has been detected from node with system id 1

 case 1: {

 if (target.direction == "unknown") {

 // Inform itself, because it uses two quarters

 if (detector.countersQueue[target.systemId] ==

 detector.MAX_CAR_ARRAY_IDEX - 1) {

 detector.rearrangeArray(0, target.systemId,

 detector.countersQueue[target.systemId], detector.CarQueue);

 detector.CarQueue[target.systemId]

[detector.countersQueue[target. systemId]] = target;

 }

 else {

239

 detector.CarQueue[target.systemId]

[detector.countersQueue[target. systemId]] = target;

 detector.countersQueue[target.systemId]++;

 }

 // it informs the next node with system id 0

 if (detector.countersQueue[target.systemId - 1] ==

 detector.MAX_CAR_ARRAY_IDEX - 1) {

 detector.rearrangeArray(0, target.systemId - 1,

 detector.countersQueue[target.systemId - 1], detector.CarQueue);

 detector.CarQueue[target.systemId - 1]

[detector.countersQueue[target.systemId - 1]] = target;

 }

 else {

 detector.CarQueue[target.systemId - 1]

[detector.countersQueue[target.systemId - 1]] = target;

 detector.countersQueue[target.systemId - 1]++;

 }

 // it informs the next node with system id 2

 if (detector.countersQueue[target.systemId + 1] ==

 detector.MAX_CAR_ARRAY_IDEX - 1) {

 detector.rearrangeArray(0, target.systemId + 1,

 detector.countersQueue[target.systemId + 1], detector.CarQueue);

 detector.CarQueue[target.systemId + 1]

[detector.countersQueue[target.systemId + 1]] = target;

 }

 else {

 detector.CarQueue[target.systemId + 1]

[detector.countersQueue[target.systemId + 1]] = target;

 detector.countersQueue[target.systemId + 1]++;

 }

240

 // it informs the next node with system id 4

 if (detector.countersQueue[target.systemId + 3] ==

 detector.MAX_CAR_ARRAY_IDEX - 1) {

 detector.rearrangeArray(0, target.systemId + 3,

 detector.countersQueue[target.systemId + 3], detector.CarQueue);

 detector.CarQueue[target.systemId + 3]

[detector.countersQueue[target.systemId + 3]] = target;

 }

 else {

 detector.CarQueue[target.systemId + 3]

[detector.countersQueue[target.systemId + 3]] = target;

 detector.countersQueue[target.systemId + 3]++;

 }

 // informs node with system id 3

 if (detector.countersQueue[target.systemId + 2] ==

 detector.MAX_CAR_ARRAY_IDEX - 1) {

 detector.rearrangeArray(0, target.systemId + 2,

 detector.countersQueue[target.systemId + 2], detector.CarQueue);

 detector.CarQueue[target.systemId + 2]

[detector.countersQueue[target.systemId + 2]] = target;

 }

 else {

 detector.CarQueue[target.systemId + 2]

[detector.countersQueue[target.systemId + 2]] = target;

 detector.countersQueue[target.systemId + 2]++;

 }

 // informs node with system id 5

 if (detector.countersQueue[target.systemId + 4] ==

 detector.MAX_CAR_ARRAY_IDEX - 1) {

 detector.rearrangeArray(0, target.systemId + 4,

 detector.countersQueue[target.systemId + 4], detector.CarQueue);

241

 detector.CarQueue[target.systemId + 4]

[detector.countersQueue[target.systemId + 4]] = target;

 }

 else {

 detector.CarQueue[target.systemId + 4]

[detector.countersQueue[target.systemId + 4]] = target;

 detector.countersQueue[target.systemId + 4]++;

 }

 } // End target.direction == "unknown"

 // if the target direction starts with left

 if (target.direction.startsWith("left")) {

 // if the target direction is left to right north

 if (target.direction.endsWith("north")) {

 // it informs the next node with system id 2

 if (detector.countersQueue[target.systemId + 1] ==

 detector.MAX_CAR_ARRAY_IDEX - 1) {

 detector.rearrangeArray(0, target.systemId + 1,

 detector.countersQueue[target.systemId + 1], detector.CarQueue);

 detector.CarQueue[target.systemId + 1]

[detector.countersQueue[target.systemId + 1]] = target;

 }

 else {

 detector.CarQueue[target.systemId + 1]

[detector.countersQueue[target.systemId + 1]] = target;

 detector.countersQueue[target.systemId + 1]++;

 }

 } // End direction.endsWith("north")

 // if the target direction is left to right

 else {

 // Inform itself, because it uses two quarters

 if (detector.countersQueue[target.systemId] ==

242

 detector.MAX_CAR_ARRAY_IDEX - 1) {

 detector.rearrangeArray(0, target.systemId,

 detector.countersQueue[target.systemId], detector.CarQueue);

 detector.CarQueue[target.systemId]

[detector.countersQueue[target. systemId]] = target;

 }

 else {

 detector.CarQueue[target.systemId]

[detector.countersQueue[target.systemId]] = target;

 detector.countersQueue[target.systemId]++;

 }

 // it informs the next node with system id 2

 if (detector.countersQueue[target.systemId + 1] ==

 detector.MAX_CAR_ARRAY_IDEX - 1) {

 detector.rearrangeArray(0, target.systemId + 1,

 detector.countersQueue[target.systemId + 1], detector.CarQueue);

 detector.CarQueue[target.systemId + 1]

[detector.countersQueue[target.systemId + 1]] = target;

 }

 else {

 detector.CarQueue[target.systemId + 1]

[detector.countersQueue[target.systemId + 1]] = target;

 detector.countersQueue[target.systemId + 1]++;

 }

 // it informs the next node with system id 4

 if (detector.countersQueue[target.systemId + 3] ==

 detector.MAX_CAR_ARRAY_IDEX - 1) {

 detector.rearrangeArray(0, target.systemId + 3,

 detector.countersQueue[target.systemId +3],

 detector.CarQueue);

 detector.CarQueue[target.systemId + 3]

243

[detector.countersQueue[target.systemId + 3]] = target;

 }

 // it place the new entry

 else {

 detector.CarQueue[target.systemId + 3]

[detector.countersQueue[target.systemId + 3]] = target;

 detector.countersQueue[target.systemId + 3]++;

 }

 // informs node with system id 3

 if (detector.countersQueue[target.systemId + 2] ==

 detector.MAX_CAR_ARRAY_IDEX - 1) {

 detector.rearrangeArray(0, target.systemId + 2,

 detector.countersQueue[target.systemId + 2], detector.CarQueue);

 detector.CarQueue[target.systemId + 2]

[detector.countersQueue[target.systemId + 2]] = target;

 }

 else {

 detector.CarQueue[target.systemId + 2]

[detector.countersQueue[target.systemId + 2]] = target;

 detector.countersQueue[target.systemId + 2]++;

 }

 // informs node with system id 5

 if (detector.countersQueue[target.systemId + 4] ==

 detector.MAX_CAR_ARRAY_IDEX - 1) {

 detector.rearrangeArray(0, target.systemId + 4,

 detector.countersQueue[target.systemId + 4], detector.CarQueue);

 detector.CarQueue[target.systemId + 4]

[detector.countersQueue[target.systemId + 4]] = target;

 }

 else {

 detector.CarQueue[target.systemId + 4]

244

[detector.countersQueue[target.systemId + 4]] = target;

 detector.countersQueue[target.systemId + 4]++;

 }

 } // End else

 } // End target.direction == "left"

 // if the target direction starts with north

 if (target.direction.startsWith("north")) {

 if (target.direction.endsWith("left")) {

 // it informs the next node with system id 0

 if (detector.countersQueue[target.systemId - 1] ==

 detector.MAX_CAR_ARRAY_IDEX - 1) {

 detector.rearrangeArray(0, target.systemId - 1,

 detector.countersQueue[target.systemId - 1], detector.CarQueue);

 detector.CarQueue[target.systemId -1]

[detector.countersQueue[target.systemId - 1]] = target;

 }

 else {

 detector.CarQueue[target.systemId - 1]

[detector.countersQueue[target.systemId - 1]] = target;

 detector.countersQueue[target.systemId - 1]++;

 }

 } // End direction.endsWith("left")

 // if the target direction is north to south

 else {

 // Inform itself, because it uses two quarters

 if (detector.countersQueue[target.systemId] ==

 detector.MAX_CAR_ARRAY_IDEX - 1) {

 detector.rearrangeArray(0, target.systemId,

 detector.countersQueue[target.systemId], detector.CarQueue);

 detector.CarQueue[target.systemId]

[detector.countersQueue[target. systemId]] = target;

245

 }

 // it place the new entry

 else {

 detector.CarQueue[target.systemId]

[detector.countersQueue[target. systemId]] = target;

 detector.countersQueue[target.systemId]++;

 }

 // it informs the next node with system id 0

 if (detector.countersQueue[target.systemId - 1] ==

 detector.MAX_CAR_ARRAY_IDEX - 1) {

 detector.rearrangeArray(0, target.systemId - 1,

 detector.countersQueue[target.systemId - 1], detector.CarQueue);

 detector.CarQueue[target.systemId - 1]

[detector.countersQueue[target.systemId - 1]] = target;

 }

 // it place the new entry

 else {

 detector.CarQueue[target.systemId - 1]

[detector.countersQueue[target.systemId - 1]] = target;

 detector.countersQueue[target.systemId - 1]++;

 }

 // it informs the next node with system id 4

 if (detector.countersQueue[target.systemId + 3] ==

 detector.MAX_CAR_ARRAY_IDEX - 1) {

 detector.rearrangeArray(0, target.systemId + 3,

 detector.countersQueue[target.systemId + 3], detector.CarQueue);

 detector.CarQueue[target.systemId + 3]

[detector.countersQueue[target.systemId + 3]] = target;

 }

 // it place the new entry

 else {

246

 detector.CarQueue[target.systemId + 3]

[detector.countersQueue[target.systemId + 3]] = target;

 detector.countersQueue[target.systemId + 3]++;

 }

 // informs node with system id 3

 if (detector.countersQueue[target.systemId + 2] ==

 detector.MAX_CAR_ARRAY_IDEX - 1) {

 detector.rearrangeArray(0, target.systemId + 2,

 detector.countersQueue[target.systemId + 2], detector.CarQueue);

 detector.CarQueue[target.systemId + 2]

[detector.countersQueue[target.systemId + 2]] = target;

 }

 // it place the new entry

 else {

 detector.CarQueue[target.systemId + 2]

[detector.countersQueue[target.systemId + 2]] = target;

 detector.countersQueue[target.systemId + 2]++;

 }

 // informs node with system id 5

 if (detector.countersQueue[target.systemId + 4] ==

 detector.MAX_CAR_ARRAY_IDEX - 1) {

 detector.rearrangeArray(0, target.systemId + 4,

 detector.countersQueue[target.systemId + 4], detector.CarQueue);

 detector.CarQueue[target.systemId + 4]

[detector.countersQueue[target.systemId + 4]] = target;

 }

 // it place the new entry

 else {

 detector.CarQueue[target.systemId + 4]

[detector.countersQueue[target.systemId + 4]] = target;

 detector.countersQueue[target.systemId + 4]++;

247

 }

 } // End else

 } // End direction.startsWith("north")

 // if the target direction starts with right or outbound

 if (target.direction.startsWith("right")

 || target.direction.startsWith("outbound")) {

 if (target.quad == 1) {

 // it informs the next node with system id 2

 if (detector.countersQueue[target.systemId + 1] ==

 detector.MAX_CAR_ARRAY_IDEX - 1) {

 detector.rearrangeArray(0, target.systemId + 1,

 detector.countersQueue[target.systemId + 1], detector.CarQueue);

 detector.CarQueue[target.systemId + 1]

[detector.countersQueue[target.systemId + 1]] = target;

 }

 else {

 detector.CarQueue[target.systemId + 1]

[detector.countersQueue[target.systemId + 1]] = target;

 detector.countersQueue[target.systemId + 1]++;

 }

 } // End target.quad == 1

 else if (target.quad == 2) {

 // it informs the next node with system id 0

 if (detector.countersQueue[target.systemId - 1] ==

 detector.MAX_CAR_ARRAY_IDEX - 1) {

 detector.rearrangeArray(0, target.systemId - 1,

 detector.countersQueue[target.systemId - 1], detector.CarQueue);

 detector.CarQueue[target.systemId - 1]

[detector.countersQueue[target.systemId - 1]] = target;

 }

 // it place the new entry

248

 else {

 detector.CarQueue[target.systemId - 1]

[detector.countersQueue[target.systemId - 1]] = target;

 detector.countersQueue[target.systemId - 1]++;

 }

 } // End target.quad == 2

 }

 } // End case nodeArray[1].systemId

 break;

 // if the target has been detected from node with system id 2

 case 2: {

 if (target.direction == "unknown") {

 // informs node with system id 1

 if (detector.countersQueue[target.systemId - 1] ==

 detector.MAX_CAR_ARRAY_IDEX - 1) {

 detector.rearrangeArray(0, target.systemId - 1,

 detector.countersQueue[target.systemId - 1], detector.CarQueue);

 detector.CarQueue[target.systemId - 1]

[detector.countersQueue[target.systemId - 1]] = target;

 }

 else {

 detector.CarQueue[target.systemId - 1]

[detector.countersQueue[target.systemId - 1]] = target;

 detector.countersQueue[target.systemId - 1]++;

 }

 // informs node with system id 4

 if (detector.countersQueue[target.systemId + 2] ==

 detector.MAX_CAR_ARRAY_IDEX - 1) {

 detector.rearrangeArray(0, target.systemId + 2,

 detector.countersQueue[target.systemId + 2], detector.CarQueue);

 detector.CarQueue[target.systemId + 2]

249

[detector.countersQueue[target.systemId + 2]] = target;

 }

 else {

 detector.CarQueue[target.systemId + 2]

[detector.countersQueue[target.systemId + 2]] = target;

 detector.countersQueue[target.systemId + 2]++;

 }

 // informs node with system id 0

 if (detector.countersQueue[target.systemId - 2] ==

 detector.MAX_CAR_ARRAY_IDEX - 1) {

 detector.rearrangeArray(0, target.systemId - 2,

 detector.countersQueue[target.systemId - 2], detector.CarQueue);

 detector.CarQueue[target.systemId - 2]

[detector.countersQueue[target.systemId - 2]] = target;

 }

 else {

 detector.CarQueue[target.systemId - 2]

[detector.countersQueue[target.systemId - 2]] = target;

 detector.countersQueue[target.systemId - 2]++;

 }

 } // End target.direction == "unknown"

 } // End case nodeArray[2].systemId

 break;

 // if the target has been detected from node with system id 3

 case 3: {

 if (target.direction == "unknown") {

 // it informs the next node with system id 4

 if (detector.countersQueue[target.systemId + 1] ==

 detector.MAX_CAR_ARRAY_IDEX - 1) {

 detector.rearrangeArray(0, target.systemId + 1,

 detector.countersQueue[target.systemId + 1], detector.CarQueue);

250

 detector.CarQueue[target.systemId + 1]

[detector.countersQueue[target.systemId + 1]] = target;

 }

 else {

 detector.CarQueue[target.systemId + 1]

[detector.countersQueue[target.systemId + 1]] = target;

 detector.countersQueue[target.systemId + 1]++;

 }

 // informs node with system id 5

 if (detector.countersQueue[target.systemId + 2] ==

 detector.MAX_CAR_ARRAY_IDEX - 1) {

 detector.rearrangeArray(0, target.systemId + 2,

 detector.countersQueue[target.systemId + 2], detector.CarQueue);

 detector.CarQueue[target.systemId + 2]

[detector.countersQueue[target.systemId + 2]] = target;

 }

 else {

 detector.CarQueue[target.systemId + 2]

[detector.countersQueue[target.systemId + 2]] = target;

 detector.countersQueue[target.systemId + 2]++;

 }

 // informs node with system id 1

 if (detector.countersQueue[target.systemId - 2] ==

 detector.MAX_CAR_ARRAY_IDEX - 1) {

 detector.rearrangeArray(0, target.systemId - 2,

 detector.countersQueue[target.systemId - 2], detector.CarQueue);

 detector.CarQueue[target.systemId - 2]

[detector.countersQueue[target.systemId - 2]] = target;

 }

 else {

 detector.CarQueue[target.systemId - 2]

251

[detector.countersQueue[target.systemId - 2]] = target;

 detector.countersQueue[target.systemId - 2]++;

 }

 } // End target.direction == "unknown"

 } // End case nodeArray[3].systemId

 break;

 // if the target has been detected from node with system id 4

 case 4: {

 if (target.direction == "unknown") {

 // Inform itself, because it uses two quarters

 if (detector.countersQueue[target.systemId] ==

 detector.MAX_CAR_ARRAY_IDEX - 1) {

 detector.rearrangeArray(0, target.systemId,

 detector.countersQueue[target.systemId], detector.CarQueue);

 detector.CarQueue[target.systemId]

[detector.countersQueue[target. systemId]] = target;

 }

 else {

 detector.CarQueue[target.systemId]

[detector.countersQueue[target. systemId]] = target;

 detector.countersQueue[target.systemId]++;

 }

 // it informs the next node with system id 3

 if (detector.countersQueue[target.systemId - 1] ==

 detector.MAX_CAR_ARRAY_IDEX - 1) {

 detector.rearrangeArray(0, target.systemId - 1,

 detector.countersQueue[target.systemId - 1], detector.CarQueue);

 detector.CarQueue[target.systemId -1]

[detector.countersQueue[target.systemId - 1]] = target;

 }

 else {

252

 detector.CarQueue[target.systemId - 1]

[detector.countersQueue[target.systemId - 1]] = target;

 detector.countersQueue[target.systemId - 1]++;

 }

 // it informs the next node with system id 5

 if (detector.countersQueue[target.systemId + 1] ==

 detector.MAX_CAR_ARRAY_IDEX - 1) {

 detector.rearrangeArray(0, target.systemId + 1,

 detector.countersQueue[target.systemId + 1], detector.CarQueue);

 detector.CarQueue[target.systemId + 1]

[detector.countersQueue[target.systemId + 1]] = target;

 }

 else {

 detector.CarQueue[target.systemId + 1]

[detector.countersQueue[target.systemId + 1]] = target;

 detector.countersQueue[target.systemId + 1]++;

 }

 // it informs the next node with system id 1

 if (detector.countersQueue[target.systemId - 3] ==

 detector.MAX_CAR_ARRAY_IDEX - 1) {

 detector.rearrangeArray(0, target.systemId - 3,

 detector.countersQueue[target.systemId - 3], detector.CarQueue);

 detector.CarQueue[target.systemId - 3]

[detector.countersQueue[target.systemId - 3]] = target;

 }

 else {

 detector.CarQueue[target.systemId - 3]

[detector.countersQueue[target.systemId - 3]] = target;

 detector.countersQueue[target.systemId - 3]++;

 }

253

 // informs node with system id 6

 if (detector.countersQueue[target.systemId + 2] ==

 detector.MAX_CAR_ARRAY_IDEX - 1) {

 detector.rearrangeArray(0, target.systemId + 2,

 detector.countersQueue[target.systemId + 2], detector.CarQueue);

 detector.CarQueue[target.systemId + 2]

[detector.countersQueue[target.systemId + 2]] = target;

 }

 else {

 detector.CarQueue[target.systemId + 2]

[detector.countersQueue[target.systemId + 2]] = target;

 detector.countersQueue[target.systemId + 2]++;

 }

 // informs node with system id 2

 if (detector.countersQueue[target.systemId - 2] ==

 detector.MAX_CAR_ARRAY_IDEX - 1) {

 detector.rearrangeArray(0, target.systemId - 2,

 detector.countersQueue[target.systemId - 2], detector.CarQueue);

 detector.CarQueue[target.systemId - 2]

[detector.countersQueue[target.systemId - 2]] = target;

 }

 else {

 detector.CarQueue[target.systemId - 2]

[detector.countersQueue[target.systemId - 2]] = target;

 detector.countersQueue[target.systemId - 2]++;

 }

 // informs node with system id 0

 if (detector.countersQueue[target.systemId - 4] ==

 detector.MAX_CAR_ARRAY_IDEX - 1) {

 detector.rearrangeArray(0, target.systemId - 4,

 detector.countersQueue[target.systemId - 4], detector.CarQueue);

254

 detector.CarQueue[target.systemId - 4]

[detector.countersQueue[target.systemId - 4]] = target;

 }

 else {

 detector.CarQueue[target.systemId - 4]

[detector.countersQueue[target.systemId - 4]] = target;

 detector.countersQueue[target.systemId - 4]++;

 }

 } // End target.direction == "unknown"

 if (target.direction.startsWith("inbound")) {

 // it informs the next node with system id 5

 if (detector.countersQueue[target.systemId + 1] ==

 detector.MAX_CAR_ARRAY_IDEX - 1) {

 detector.rearrangeArray(0, target.systemId + 1,

 detector.countersQueue[target.systemId + 1], detector.CarQueue);

 detector.CarQueue[target.systemId + 1]

[detector.countersQueue[target.systemId + 1]] = target;

 }

 else {

 detector.CarQueue[target.systemId + 1]

[detector.countersQueue[target.systemId + 1]] = target;

 detector.countersQueue[target.systemId + 1]++;

 }

 // informs node with system id 6

 if (detector.countersQueue[target.systemId + 2] ==

 detector.MAX_CAR_ARRAY_IDEX - 1) {

 detector.rearrangeArray(0, target.systemId + 2,

 detector.countersQueue[target.systemId + 2], detector.CarQueue);

 detector.CarQueue[target.systemId + 2]

[detector.countersQueue[target.systemId + 2]] = target;

 }

255

 else {

 detector.CarQueue[target.systemId + 2]

[detector.countersQueue[target.systemId + 2]] = target;

 detector.countersQueue[target.systemId + 2]++;

 }

 } // End target.direction == "inbound"

 if (target.direction.startsWith("outbound")) {

 if (target.direction.endsWith("right")) {

 // it informs the next node with system id 3

 if (detector.countersQueue[target.systemId - 1] ==

 detector.MAX_CAR_ARRAY_IDEX - 1) {

 detector.rearrangeArray(0, target.systemId - 1,

 detector.countersQueue[target.systemId - 1], detector.CarQueue);

 detector.CarQueue[target.systemId - 1]

[detector.countersQueue[target.systemId - 1]] = target;

 }

 else {

 detector.CarQueue[target.systemId - 1]

[detector.countersQueue[target.systemId - 1]] = target;

 detector.countersQueue[target.systemId - 1]++;

 }

 } // target.direction.endsWith("right")

 else {

 // Inform itself, because it uses two quarters

 if (detector.countersQueue[target.systemId] ==

 detector.MAX_CAR_ARRAY_IDEX - 1) {

 detector.rearrangeArray(0, target.systemId,

 detector.countersQueue[target.systemId], detector.CarQueue);

 detector.CarQueue[target.systemId]

[detector.countersQueue[target. systemId]] = target;

 }

256

 else {

 detector.CarQueue[target.systemId]

[detector.countersQueue[target. systemId]] = target;

 detector.countersQueue[target.systemId]++;

 }

 // it informs the next node with system id 3

 if (detector.countersQueue[target.systemId - 1] ==

 detector.MAX_CAR_ARRAY_IDEX - 1) {

 detector.rearrangeArray(0, target.systemId - 1,

 detector.countersQueue[target.systemId - 1], detector.CarQueue);

 detector.CarQueue[target.systemId - 1]

[detector.countersQueue[target.systemId - 1]] = target;

 }

 else {

 detector.CarQueue[target.systemId - 1]

[detector.countersQueue[target.systemId - 1]] = target;

 detector.countersQueue[target.systemId - 1]++;

 }

 // it informs the next node with system id 1

 if (detector.countersQueue[target.systemId - 3] ==

 detector.MAX_CAR_ARRAY_IDEX - 1) {

 detector.rearrangeArray(0, target.systemId - 3,

 detector.countersQueue[target.systemId - 3], detector.CarQueue);

 detector.CarQueue[target.systemId - 3]

[detector.countersQueue[target.systemId - 3]] = target;

 }

 else {

 detector.CarQueue[target.systemId - 3]

[detector.countersQueue[target.systemId - 3]] = target;

 detector.countersQueue[target.systemId - 3]++;

 }

257

 // informs node with system id 2

 if (detector.countersQueue[target.systemId - 2] ==

 detector.MAX_CAR_ARRAY_IDEX - 1) {

 detector.rearrangeArray(0, target.systemId - 2,

 detector.countersQueue[target.systemId - 2], detector.CarQueue);

 detector.CarQueue[target.systemId - 2]

[detector.countersQueue[target.systemId - 2]] = target;

 }

 else {

 detector.CarQueue[target.systemId - 2]

[detector.countersQueue[target.systemId - 2]] = target;

 detector.countersQueue[target.systemId - 2]++;

 }

 // informs node with system id 0

 if (detector.countersQueue[target.systemId - 4] ==

 detector.MAX_CAR_ARRAY_IDEX - 1) {

 detector.rearrangeArray(0, target.systemId - 4,

 detector.countersQueue[target.systemId - 4], detector.CarQueue);

 detector.CarQueue[target.systemId - 4]

[detector.countersQueue[target.systemId - 4]] = target;

 }

 else {

 detector.CarQueue[target.systemId - 4]

[detector.countersQueue[target.systemId - 4]] = target;

 detector.countersQueue[target.systemId - 4]++;

 }

 }

 } // target.direction.startsWith("outbound")

 if (target.direction.startsWith("right")) {

 // Inform itself, because it uses two quarters

258

 if (detector.countersQueue[target.systemId] ==

 detector.MAX_CAR_ARRAY_IDEX - 1) {

 detector.rearrangeArray(0, target.systemId,

 detector.countersQueue[target.systemId], detector.CarQueue);

 detector.CarQueue[target.systemId]

[detector.countersQueue[target. systemId]] = target;

 }

 else {

 detector.CarQueue[target.systemId]

[detector.countersQueue[target. systemId]] = target;

 detector.countersQueue[target.systemId]++;

 }

 // it informs the next node with system id 5

 if (detector.countersQueue[target.systemId + 1] ==

 detector.MAX_CAR_ARRAY_IDEX - 1) {

 detector.rearrangeArray(0, target.systemId + 1,

 detector.countersQueue[target.systemId + 1], detector.CarQueue);

 detector.CarQueue[target.systemId + 1]

[detector.countersQueue[target.systemId + 1]] = target;

 }

 else {

 detector.CarQueue[target.systemId + 1]

[detector.countersQueue[target.systemId + 1]] = target;

 detector.countersQueue[target.systemId + 1]++;

 }

 // it informs the next node with system id 1

 if (detector.countersQueue[target.systemId - 3] ==

 detector.MAX_CAR_ARRAY_IDEX - 1) {

 detector.rearrangeArray(0, target.systemId - 3,

 detector.countersQueue[target.systemId - 3], detector.CarQueue);

 detector.CarQueue[target.systemId - 3]

259

[detector.countersQueue[target.systemId - 3]] = target;

 }

 else {

 detector.CarQueue[target.systemId - 3]

[detector.countersQueue[target.systemId - 3]] = target;

 detector.countersQueue[target.systemId - 3]++;

 }

 // informs node with system id 2

 if (detector.countersQueue[target.systemId - 2] ==

 detector.MAX_CAR_ARRAY_IDEX - 1) {

 detector.rearrangeArray(0, target.systemId - 2,

 detector.countersQueue[target.systemId - 2], detector.CarQueue);

 detector.CarQueue[target.systemId - 2]

[detector.countersQueue[target.systemId - 2]] = target;

 }

 else {

 detector.CarQueue[target.systemId - 2]

[detector.countersQueue[target.systemId - 2]] = target;

 detector.countersQueue[target.systemId - 2]++;

 }

 // informs node with system id 0

 if (detector.countersQueue[target.systemId - 4] ==

 detector.MAX_CAR_ARRAY_IDEX - 1) {

 detector.rearrangeArray(0, target.systemId - 4,

 detector.countersQueue[target.systemId - 4], detector.CarQueue);

 detector.CarQueue[target.systemId - 4]

[detector.countersQueue[target.systemId - 4]] = target;

 }

 else {

 detector.CarQueue[target.systemId - 4]

[detector.countersQueue[target.systemId - 4]] = target;

260

 detector.countersQueue[target.systemId - 4]++;

 }

 } // target.direction.startsWith("right")

 if (target.direction.startsWith("left")) {

 // it informs the next node with system id 3

 if (detector.countersQueue[target.systemId - 1] ==

 detector.MAX_CAR_ARRAY_IDEX - 1) {

 detector.rearrangeArray(0, target.systemId - 1,

 detector.countersQueue[target.systemId - 1], detector.CarQueue);

 detector.CarQueue[target.systemId - 1]

[detector.countersQueue[target.systemId - 1]] = target;

 }

 else {

 detector.CarQueue[target.systemId - 1]

[detector.countersQueue[target.systemId - 1]] = target;

 detector.countersQueue[target.systemId - 1]++;

 }

 } // End target.direction.startsWith("left")

 } // End case nodeArray[4].systemId

 break;

 // if the target has been detected from node with system id 5

 case 5: {

 if (target.direction.startsWith("inbound")) {

 // it informs the next node with system id 5

 if (detector.countersQueue[target.systemId + 1] ==

 detector.MAX_CAR_ARRAY_IDEX - 1) {

 detector.rearrangeArray(0, target.systemId + 1,

 detector.countersQueue[target.systemId + 1], detector.CarQueue);

 detector.CarQueue[target.systemId + 1]

[detector.countersQueue[target.systemId + 1]] = target;

 }

261

 else {

 detector.CarQueue[target.systemId + 1]

[detector.countersQueue[target.systemId + 1]] = target;

 detector.countersQueue[target.systemId + 1]++;

 }

 // informs node with system id 7

 if (detector.countersQueue[target.systemId + 2] ==

 detector.MAX_CAR_ARRAY_IDEX - 1) {

 detector.rearrangeArray(0, target.systemId + 2,

 detector.countersQueue[target.systemId + 2], detector.CarQueue);

 detector.CarQueue[target.systemId + 2]

[detector.countersQueue[target.systemId + 2]] = target;

 }

 else {

 detector.CarQueue[target.systemId + 2]

[detector.countersQueue[target.systemId + 2]] = target;

 detector.countersQueue[target.systemId + 2]++;

 }

 } // End target.direction == "inbound"

 if (target.direction.startsWith("outbound")) {

 // it informs the next node with system id 4

 if (detector.countersQueue[target.systemId - 1] ==

 detector.MAX_CAR_ARRAY_IDEX - 1) {

 detector.rearrangeArray(0, target.systemId - 1,

 detector.countersQueue[target.systemId - 1], detector.CarQueue);

 detector.CarQueue[target.systemId - 1]

[detector.countersQueue[target.systemId - 1]] = target;

 }

 else {

 detector.CarQueue[target.systemId - 1]

[detector.countersQueue[target.systemId - 1]] = target;

262

 detector.countersQueue[target.systemId - 1]++;

 }

 // informs node with system id 1

 if (detector.countersQueue[target.systemId - 4] ==

 detector.MAX_CAR_ARRAY_IDEX - 1) {

 detector.rearrangeArray(0, target.systemId - 4,

 detector.countersQueue[target.systemId - 4], detector.CarQueue);

 detector.CarQueue[target.systemId - 4]

[detector.countersQueue[target.systemId - 4]] = target;

 }

 else {

 detector.CarQueue[target.systemId - 4]

[detector.countersQueue[target.systemId - 4]] = target;

 detector.countersQueue[target.systemId - 4]++;

 }

 } // End target.direction == "outbound"

 if (target.direction == "unknown") {

 // it informs the next node with system id 5

 if (detector.countersQueue[target.systemId + 1] ==

 detector.MAX_CAR_ARRAY_IDEX - 1) {

 detector.rearrangeArray(0, target.systemId + 1,

 detector.countersQueue[target.systemId + 1], detector.CarQueue);

 detector.CarQueue[target.systemId + 1]

[detector.countersQueue[target.systemId + 1]] = target;

 }

 else {

 detector.CarQueue[target.systemId + 1]

[detector.countersQueue[target.systemId + 1]] = target;

 detector.countersQueue[target.systemId + 1]++;

 }

263

 // informs node with system id 7

 if (detector.countersQueue[target.systemId + 2] ==

 detector.MAX_CAR_ARRAY_IDEX - 1) {

 detector.rearrangeArray(0, target.systemId + 2,

 detector.countersQueue[target.systemId + 2], detector.CarQueue);

 detector.CarQueue[target.systemId + 2]

[detector.countersQueue[target.systemId + 2]] = target;

 }

 else {

 detector.CarQueue[target.systemId + 2]

[detector.countersQueue[target.systemId + 2]] = target;

 detector.countersQueue[target.systemId + 2]++;

 }

 // it informs the next node with system id 4

 if (detector.countersQueue[target.systemId - 1] ==

 detector.MAX_CAR_ARRAY_IDEX - 1) {

 detector.rearrangeArray(0, target.systemId - 1,

 detector.countersQueue[target.systemId - 1], detector.CarQueue);

 detector.CarQueue[target.systemId - 1]

[detector.countersQueue[target.systemId - 1]] = target;

 }

 else {

 detector.CarQueue[target.systemId - 1]

[detector.countersQueue[target.systemId - 1]] = target;

 detector.countersQueue[target.systemId - 1]++;

 }

 // informs node with system id 3

 if (detector.countersQueue[target.systemId - 2] ==

 detector.MAX_CAR_ARRAY_IDEX - 1) {

 detector.rearrangeArray(0, target.systemId - 2,

 detector.countersQueue[target.systemId - 2], detector.CarQueue);

 detector.CarQueue[target.systemId - 2]

264

[detector.countersQueue[target.systemId - 2]] = target;

 }

 else {

 detector.CarQueue[target.systemId - 2]

[detector.countersQueue[target.systemId - 2]] = target;

 detector.countersQueue[target.systemId - 2]++;

 }

 // informs node with system id 1

 if (detector.countersQueue[target.systemId - 4] ==

 detector.MAX_CAR_ARRAY_IDEX - 1) {

 detector.rearrangeArray(0, target.systemId - 4,

 detector.countersQueue[target.systemId - 4], detector.CarQueue);

 detector.CarQueue[target.systemId - 4]

[detector.countersQueue[target.systemId - 4]] = target;

 }

 else {

 detector.CarQueue[target.systemId - 4]

[detector.countersQueue[target.systemId - 4]] = target;

 detector.countersQueue[target.systemId - 4]++;

 }

 } // End target.direction == "unknown"

 } // End case nodeArray[5].systemId

 break;

 // if the target has been detected from node with system id 6

 case 6: {

 if (target.direction.startsWith("inbound")) {

 // it informs the next node with system id 7

 if (detector.countersQueue[target.systemId + 1] ==

 detector.MAX_CAR_ARRAY_IDEX - 1) {

 detector.rearrangeArray(0, target.systemId + 1,

 detector.countersQueue[target.systemId + 1], detector.CarQueue);

265

 detector.CarQueue[target.systemId + 1]

[detector.countersQueue[target.systemId + 1]] = target;

 }

 else {

 detector.CarQueue[target.systemId + 1]

[detector.countersQueue[target.systemId + 1]] = target;

 detector.countersQueue[target.systemId + 1]++;

 }

 } // End target.direction == "inbound"

 if (target.direction.startsWith("outbound")) {

 // it informs the next node with system id 5

 if (detector.countersQueue[target.systemId - 1] ==

 detector.MAX_CAR_ARRAY_IDEX - 1) {

 detector.rearrangeArray(0, target.systemId - 1,

 detector.countersQueue[target.systemId - 1], detector.CarQueue);

 detector.CarQueue[target.systemId - 1]

[detector.countersQueue[target.systemId - 1]] = target;

 }

 else {

 detector.CarQueue[target.systemId - 1]

[detector.countersQueue[target.systemId - 1]] = target;

 detector.countersQueue[target.systemId - 1]++;

 }

 // informs node with system id 4

 if (detector.countersQueue[target.systemId - 2] ==

 detector.MAX_CAR_ARRAY_IDEX - 1) {

 detector.rearrangeArray(0, target.systemId - 2,

 detector.countersQueue[target.systemId - 2], detector.CarQueue);

 detector.CarQueue[target.systemId - 2]

[detector.countersQueue[target.systemId - 2]] = target;

 }

266

 else {

 detector.CarQueue[target.systemId - 2]

[detector.countersQueue[target.systemId - 2]] = target;

 detector.countersQueue[target.systemId - 2]++;

 }

 } // End target.direction == "outbound"

 if (target.direction == "unknown") {

 // it informs the next node with system id 7

 if (detector.countersQueue[target.systemId + 1] ==

 detector.MAX_CAR_ARRAY_IDEX - 1) {

 detector.rearrangeArray(0, target.systemId + 1,

 detector.countersQueue[target.systemId + 1], detector.CarQueue);

 detector.CarQueue[target.systemId + 1]

[detector.countersQueue[target.systemId + 1]] = target;

 }

 else {

 detector.CarQueue[target.systemId + 1]

[detector.countersQueue[target.systemId + 1]] = target;

 detector.countersQueue[target.systemId + 1]++;

 }

 // it informs the next node with system id 5

 if (detector.countersQueue[target.systemId - 1] ==

 detector.MAX_CAR_ARRAY_IDEX - 1) {

 detector.rearrangeArray(0, target.systemId - 1,

 detector.countersQueue[target.systemId - 1], detector.CarQueue);

 detector.CarQueue[target.systemId - 1]

[detector.countersQueue[target.systemId - 1]] = target;

 }

 else {

 detector.CarQueue[target.systemId -

 1][detector.countersQueue[target.systemId - 1]] = target;

267

 detector.countersQueue[target.systemId - 1]++;

 }

 // informs node with system id 4

 if (detector.countersQueue[target.systemId - 2] ==

 detector.MAX_CAR_ARRAY_IDEX - 1) {

 detector.rearrangeArray(0, target.systemId - 2,

 detector.countersQueue[target.systemId - 2], detector.CarQueue);

 detector.CarQueue[target.systemId - 2]

[detector.countersQueue[target.systemId - 2]] = target;

 }

 else {

 detector.CarQueue[target.systemId - 2]

[detector.countersQueue[target.systemId - 2]] = target;

 detector.countersQueue[target.systemId - 2]++;

 }

 } // End target.direction == "unknown"

 } // End case nodeArray[6].systemId

 break;

 // if the target has been detected from node with system id 7

 case 7: {

 if (target.direction == "unknown") {

 // it informs the next node with system id 6

 if (detector.countersQueue[target.systemId - 1] ==

 detector.MAX_CAR_ARRAY_IDEX - 1) {

 detector.rearrangeArray(0, target.systemId - 1,

 detector.countersQueue[target.systemId - 1], detector.CarQueue);

 detector.CarQueue[target.systemId - 1]

[detector.countersQueue[target.systemId - 1]] = target;

 }

 // it place the new entry

 else {

268

 detector.CarQueue[target.systemId - 1]

[detector.countersQueue[target.systemId - 1]] = target;

 detector.countersQueue[target.systemId - 1]++;

 }

 // informs node with system id 5

 if (detector.countersQueue[target.systemId - 2] ==

 detector.MAX_CAR_ARRAY_IDEX - 1) {

 detector.rearrangeArray(0, target.systemId - 2,

 detector.countersQueue[target.systemId - 2], detector.CarQueue);

 detector.CarQueue[target.systemId - 2]

[detector.countersQueue[target.systemId - 2]] = target;

 }

 else {

 detector.CarQueue[target.systemId - 2]

[detector.countersQueue[target.systemId - 2]] = target;

 detector.countersQueue[target.systemId - 2]++;

 }

 } // End target.direction == "unknown

 } // End case nodeArray[7].systemId

 break;

 default:

 System.out.println("WARNING" + "\n" +

 "This version of the system is capable to handle up to " +

 "eight nodes!" + "\n" +

 "The data from the additional nodes are discarded");

 } // End switch

 // call the motionDetector's sendCommand method to inform the camera

 detector.sendCommand(target.systemId, target.incomingObject,

 target.direction, target.speed, target.timeToCamera,

 target.speedHistory);

269

 } //End detectCar

}

270

THIS PAGE INTENTIONALLY LEFT BLANK

271

LIST OF REFERENCES

Al-Karaki, J., Kamal, A. (2005). A Taxonomy of Routing Techniques in Wireless Sensor

Networks. In Ilayas, M., Mahgoub, I.. (Eds) Handbook of Sensor Networks:

Compact Wireless and Wired Sensing Systems. Boca Raton.

Crossbow (2005). [http://www.xbow.com]. (last accessed 07/05)

Callaway H. (2004). Wireless Sensor Networks: Architectures and Protocols. Boca

Raton.

Carle, J., Simplt-Ryl, D. (2004, February). Energy-Efficient Area Monitoring for Sensor

Networks. Computer, 37, 40-46.

Culler, D., Hong, W. (Eds) (2004, June). Wireless Sensor Networks. Communication of

the ACM, 47, 30-33.

Culler, D., Estin, D., Strivastava, M (2004, August) Overview of Sensor Networks.

Computer, 37, 41-49.

Dixon B, Felts W.. Design and Implementation of a Networked Architecture Utilization

Capabilities Discovery and Resource Aggregation. Monterey: Naval Postgraduate

School, 2005.

Feibel W. (1995). The Encyclopedia of Networking. Alameda.

Haenggi, M. (2005). Opportunities and Challenges in Wireless Sensor Networks. In

Ilayas, M., Mahgoub, I.. (Eds) Handbook of Sensor Networks: Compact Wireless

and Wired Sensing Systems. Boca Raton.

Holger, K., Willig A. (2005). Protocols and Architectures for Wireless Sensor Networks.

London.

IEEE. (2003). Part 15.4: Wireless Medium Access Control (MAC) and Physical Layer

(PHY) Specifications for Low-Rate Wireless Personal Area Networks (LR-

WPANs). New York

272

Karapetsas K.. Building a Simulation Toolkit for Wireless Mesh Clusters and Evaluating

the Suitability of Different Families of Ad Hoc Protocols for the Tactical Network

Topology. Naval Postgraduate School, Thesis, 2005.

Kurose J., Ross K.. Computer Networking: A Top-Down Approach Featuring the

Internet. 2003.

MSP410 Datasheet [http://www.xbow.com]. (last accessed 07/05)

Ohrtman F., Roeder K.. Wi-Fi Handbook: Building 802.11b Wireless Networks. New

York, 2003.

Perrig, A., Stankovic, J., Wagner, D. (2004, June). Security inWireless Sensor Networks.

Communication of the ACM, 47, 53-57.

Peterson L., Davie B.. Computer Networks: A System Approach. San Francisco, 2003.

Stallings W.. Wireless Communication and Networks. New Jersey, 2002.

Slijepcevic, S., Wong, J., Potkonjak, M. (2005). Security and Privacy Protection in

Wireless Sensor Networks. In Ilayas, M., Mahgoub, I.. (Eds) Handbook of Sensor

Networks: Compact Wireless and Wired Sensing Systems. Boca Raton.

Wang, Q., Hassanein, H., Xu, K. (2005). A Practical Perspective on Wireless Sensor

Networks. In Ilayas, M., Mahgoub, I.. (Eds) Handbook of Sensor Networks:

Compact Wireless and Wired Sensing Systems. Boca Raton.

Wikipedia (2005). [http://en.wikipedia.org/wiki/Wireless_Mesh_Networks]. (last

accessed 08/05).

Wireless sensor Networks: MTS/MDA Sensor and Data Acquisition Board User’s

Manual. San Jose: Crossbow, 2005.

Wireless sensor Networks: MPR/MIB User’s Manual. San Jose: Crossbow, 2005.

Wireless sensor Networks: MOTE-VIEW 1.0 User’s Manual. San Jose: Crossbow, 2005.

Wireless sensor Networks: MSP410 Mote Security User’s Manual. San Jose: Crossbow,

2005.

273

Yarvis, M., Ye, W. (2005). Tiered Architectures in Sensor Networks. In Ilayas, M.,

Mahgoub, I.. (Eds) Handbook of Sensor Networks: Compact Wireless and Wired

Sensing Systems. Boca Raton.

Zhao, F., Guibas, L. (2004). Wireless Sensor Networks: An Information Processing

Approach. San Francisco.

274

THIS PAGE INTENTIONALLY LEFT BLANK

275

INITIAL DISTRIBUTION LIST

1. Defense Technical Information Center
Ft. Belvoir, Virginia

2. Dudley Knox Library
Naval Postgraduate School
Monterey, California

3. Dr. Gurnider Singh
Naval Postgraduate School
Monterey, California

4. Arijit Das
Naval Postgraduate School
Monterey, California

5. Vlasios Salatas
 Hellenic Navy, Greece

	I. INTRODUCTION
	A. BACKGROUND
	B. OBJECTIVES
	C. RESEARCH QUESTIONS
	D. SCOPE
	E. METHODOLOGY
	F. THESIS ORGANIZATION

	II. WIRELESS SENSOR NETWORKS
	A. INTRODUCTION TO WIRELESS SENSOR NETWORKS
	1. Development of Wireless Networks
	2. Ad-Hoc Networks: Introduction
	3. Wireless Ad-Hoc Mesh Networks: Characteristics
	Wireless Sensor Networks: Overview
	5. Wireless Sensor Network: Constraints and Challenges

	B. WIRELESS SENSOR NETWORKS: APPLICATIONS AND MOTIVATION
	1. Industrial Control and Monitoring
	2. Home Applications
	3. Environmental and Agricultural Monitoring
	4. Military and Security Applications
	5. Asset Tracking
	6. Heath Monitoring
	Application Categories

	C. POWER MANAGEMENT
	Node’s Power Management
	System’s Power Management

	TOPOLOGY ARCHITECTURE AND NETWORKING-ROUTING ISSUES
	1. Design Objectives
	a. Sensor Devices
	b. Scalability, flexibility, and QoS
	c. Application-Specific and Resource-Efficient Design
	d. Self-Configuration and Adaptability
	e. Locality of Information
	f. Attribute-Based Naming and Data Centric Routing
	g. Cross-Layer Design

	Topology and System’s Architecture
	a. Flat Network Architecture
	b. Hierarchical and Cluster-Based Network Architecture

	3. Deployment Strategies
	a. Predetermined
	b. Self-Regulated
	c. Randomly Undetermined
	d. Biased Distribution

	E. SECURITY AND PRIVACY CONCERNS
	1. Key Establishment and Trust Setup
	2. Secrecy and Authentication
	3. Privacy
	4. Communication Robustness

	F. PROTOCOLS AND INDUSTRY’S STANDARDS FOR WIRELESS SENSOR NE
	1. 802.15.4
	a. Physical Layer
	b. MAC Layer

	2. ZigBee

	G. TINYOS

	III. OBJECT TRACKING
	A. INTRODUCTION
	B. OVERVIEW OF THE HARDWARE AND SOFTWARE PRODUCTS
	1. Crossbow Overview
	2. Mote-KIT2400 – MICAz
	a. MICAz Processor/Radio Boards - MPR2400 (MICAz)
	b. MTS300CA / MTS310CA
	c. MIB510 Serial Interface Board

	3 Crossbow Software Solutions
	a. XMesh Network Stack
	b. MOTE-VIEW Client Software
	c. XServe
	d. Surge Network Viewer (Surge-View)

	MSP410 Mote Security System
	a. Overview
	b. Proposed Deployments
	c. Systems Components
	d. MSP410CA (mote) MICA2 Platform Core (Microcontroller, Rad
	e. MSP410CA (mote) Sensing Subsystem, Passive Infrared (PIR)
	f. MSP410CA (mote) Sensing Subsystem, Magnetic Sensor
	g. MSP410CA (mote) Power Characteristics
	h. MBR410CA Mote Base Station

	C. TSSRV3
	1. Overview
	2. Hardware
	3. System Architecture
	4. Software Components

	IV. OBJECT-TRACKING APPLICATION: ARCHITECTURE AND IMPLEMENTA
	A. APPLICATION REQUIREMENTS AND DESIGN CONSIDERATIONS
	B. APPLICATION SCENARIOS
	1. Straight Road Scenario
	2. T-Road Scenario
	3. Crossroads Scenario

	C. FINDING SENSOR’S TOPOLOGY
	1. Straight-Road Node Topology
	2. T-Road and Crossroads Node Topology

	D. PROGRAMMING LANGUAGE
	E. OBTAINING DATA FROM THE SENSOR NETWORK
	F. ANALYSIS OF RAW DATA
	1. Step 1: Object Detection
	2. Step 2: Characterization of the Detected Object
	3. Step 3: Storing Object Data
	4. Step 4: Updating the Thresholds
	5. Step 5: Checking the node FIFO
	6. Step 6: Producing the Direction Output
	7. Step 7: Producing the Speed Outputs
	8. Step 8: Informing the Neighboring Nodes
	9. Step 9: Removing the Old Data

	G. PROGRAMMING ISSUES AND ASSUMPTIONS
	H. SOFTWARE COMPONENTS
	1. User Interface Component
	2. Data Acquisition Component
	3. Algorithmic Component
	4. Information Flow
	5. Object-Tracking Outputs

	V. TESTING AND EVALUATION
	A. HARDWARE TESTING AND EVALUATION
	1. RF Range Test
	2. Environmental Influence on the PIR Returns
	3. Sensor Sensing Range and Detection Probability
	a. Vehicle Detection Experiment
	b. Human Detection Experiment

	B. OBJECT-TRACKING APPLICATION: TEST AND EVALUATION
	Evaluation of the Object-Tracking Application
	Object-Tracking Application Deployment Recommendations

	VI. DISCUSSION
	SUMMARY AND CONCLUSIONS
	B. FUTURE WORK

	APPENDIX. OBJECT-TRACKING SOURCE CODE
	LIST OF REFERENCES
	INITIAL DISTRIBUTION LIST

